Niche and interspecific association of dominant zooplankton species near the Taishan coastal area in the South China Sea.

Mar Environ Res

Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangdong Provincial Key Laboratory of Fishery Ecology Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen 518120, China. Electronic address:

Published: December 2024

Marine zooplankton communities represent one of the most diverse and abundant species groups on earth. To investigate the ecological niche characteristics and interspecific interactions of marine zooplankton, and to elucidate their role in carbon deposition and biogeochemical cycling, we conducted a study on the zooplankton community near Taishan in the South China Sea between December 2015 and September 2016. Using niche breadth, niche overlap, the variance ratio method, chi-square tests, and linkage coefficients, we analyzed the interrelationships among the major zooplankton species. Over four sampling seasons, we identified 61 species of zooplankton spanning 11 taxonomic categories. Copepods were the most abundant, comprising 32 species and accounting for 66.67% of the total. The niche breadth and overlap of dominant species displayed seasonal variation, with niche breadth ranging from 2.04 to 2.82, and niche overlap between species pairs ranging from 0.31 to 0.85. Correlation and interspecies association analyses revealed that interspecies associations near the Taishan coastal area in autumn and winter were generally significantly positively correlated. However, the relationships among the 18 dominant species groups during these seasons were not statistically significant (p > 0.05), indicating weak interspecies connectivity within the zooplankton communities in this region. Our findings also suggest that anthropogenic disturbances and seasonal variations influenced the zooplankton community, contributing to its structural instability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106929DOI Listing

Publication Analysis

Top Keywords

niche breadth
12
zooplankton
8
species
8
zooplankton species
8
taishan coastal
8
coastal area
8
south china
8
china sea
8
marine zooplankton
8
zooplankton communities
8

Similar Publications

Niche and interspecific association of dominant zooplankton species near the Taishan coastal area in the South China Sea.

Mar Environ Res

December 2024

Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Scientific Observation and Research Station of Pearl River Estuary Ecosystem of Guangdong Province, Guangdong Provincial Key Laboratory of Fishery Ecology Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; National Agricultural Experimental Station for Fishery Resources and Environment Dapeng, Shenzhen 518120, China. Electronic address:

Marine zooplankton communities represent one of the most diverse and abundant species groups on earth. To investigate the ecological niche characteristics and interspecific interactions of marine zooplankton, and to elucidate their role in carbon deposition and biogeochemical cycling, we conducted a study on the zooplankton community near Taishan in the South China Sea between December 2015 and September 2016. Using niche breadth, niche overlap, the variance ratio method, chi-square tests, and linkage coefficients, we analyzed the interrelationships among the major zooplankton species.

View Article and Find Full Text PDF

Background: Food provides essential nutrients and energy necessary for animals to sustain life activities. Accordingly, dietary niche analysis facilitates the exploration of foraging strategies and interspecific relationships among wildlife. The vegetation succession has reduced understory forage resources (.

View Article and Find Full Text PDF

A meta-analysis highlights the idiosyncratic nature of tradeoffs in laboratory models of virus evolution.

Virus Evol

December 2024

Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States.

Different theoretical frameworks have been invoked to guide the study of virus evolution. Three of the more prominent ones are (i) the evolution of virulence, (ii) life history theory, and (iii) the generalism-specialism dichotomy. All involve purported tradeoffs between traits that define the evolvability and constraint of virus-associated phenotypes.

View Article and Find Full Text PDF

Giant viruses are crucial for marine ecosystem dynamics because they regulate microeukaryotic community structure, accelerate carbon and nutrient cycles, and drive the evolution of their hosts through co-evolutionary processes. Previously reported long-term observations revealed that these viruses display seasonal fluctuations in abundance. However, the underlying genetic mechanisms driving such dynamics of these viruses remain largely unknown.

View Article and Find Full Text PDF

Forest management impacts on soil phosphorus cycling: Insights from metagenomics in Moso bamboo plantations.

J Environ Manage

December 2024

China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, 310012, China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang, 310012, China.

Bamboo forests are crucial ecosystems and provide essential ecological and economic services in both tropical and subtropical regions. Soil phosphorus (P), a vital nutrient for plant growth, is fundamental to the productivity and health of bamboo forests. However, the microbial mechanisms through which management practices affect soil P processes in bamboo forests remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!