This paper investigates the probabilistic-sampling-based asynchronous control problem for semi-Markov reaction-diffusion neural networks (SMRDNNs). Aiming at mitigating the drawback of the well-known fixed-sampling control law, a more general probabilistic-sampling-based control strategy is developed to characterize the randomly sampling period. The system mode is considered to be related to the sojourn-time and undetectable. The jumping of the controller depends on the observation mode, and is asynchronous with the jumping of the system mode. By utilizing the established hidden semi-Markov model and a stochastic analysis approach, some sufficient conditions are obtained to ensure the asymptotically stable of the SMRDNNs. Finally, an example is given to prove the validity and superiority of the conclusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.107072 | DOI Listing |
Neural Netw
December 2024
School of Engineering, Qufu Normal University, Rizhao 273165, China.
This paper investigates the probabilistic-sampling-based asynchronous control problem for semi-Markov reaction-diffusion neural networks (SMRDNNs). Aiming at mitigating the drawback of the well-known fixed-sampling control law, a more general probabilistic-sampling-based control strategy is developed to characterize the randomly sampling period. The system mode is considered to be related to the sojourn-time and undetectable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!