This paper investigates the probabilistic-sampling-based asynchronous control problem for semi-Markov reaction-diffusion neural networks (SMRDNNs). Aiming at mitigating the drawback of the well-known fixed-sampling control law, a more general probabilistic-sampling-based control strategy is developed to characterize the randomly sampling period. The system mode is considered to be related to the sojourn-time and undetectable. The jumping of the controller depends on the observation mode, and is asynchronous with the jumping of the system mode. By utilizing the established hidden semi-Markov model and a stochastic analysis approach, some sufficient conditions are obtained to ensure the asymptotically stable of the SMRDNNs. Finally, an example is given to prove the validity and superiority of the conclusion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.107072DOI Listing

Publication Analysis

Top Keywords

probabilistic-sampling-based asynchronous
8
asynchronous control
8
neural networks
8
system mode
8
control
4
control semi-markov
4
semi-markov jumping
4
jumping neural
4
networks reaction-diffusion
4
reaction-diffusion terms
4

Similar Publications

This paper investigates the probabilistic-sampling-based asynchronous control problem for semi-Markov reaction-diffusion neural networks (SMRDNNs). Aiming at mitigating the drawback of the well-known fixed-sampling control law, a more general probabilistic-sampling-based control strategy is developed to characterize the randomly sampling period. The system mode is considered to be related to the sojourn-time and undetectable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!