Lactoferrin-modified nanoemulsions enhance brain-targeting and therapeutic efficacy of arctigenin against Toxoplasma gondii-induced neuronal injury.

Int J Parasitol Drugs Drug Resist

Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China. Electronic address:

Published: December 2024

Toxoplasma gondii, a neurotropic protozoan parasite, affects the central nervous system and causes various neurological disorders. Previous studies have demonstrated that Arctigenin (AG) exhibits anti-T. gondii activity and reduces depression-like behaviors induced by T. gondii infection. This study aimed to enhance AG's brain-targeting and therapeutic efficacy by developing lactoferrin-modified nanoemulsions loaded with AG (Lf-AG-NEs). Lf-modified nanoemulsions were prepared and assessed using in vivo and in vitro infection models with the T. gondii RH strain, and a co-culture system of BV2 microglia and primary neuron cells. The effects of Lf-AG-NEs on T. gondii-induced neuronal injury were examined, and potential molecular mechanisms were elucidated through real-time quantitative PCR, western blotting, immunofluorescence, flow cytometry, immunohistochemistry, and Nissl staining. In vitro assessments showed significant increases in cellular uptake and blood-brain barrier penetration by Lf-AG-NEs. These nanoemulsions notably inhibited T. gondii proliferation in brain tissue and BV2 cells, surpassing the effects of free AG or AG-NEs alone. Additionally, Lf-AG-NEs substantially alleviated neuropathological changes and reduced microglial activation and neuroinflammation by downregulating the TLR4/NF-κB and TNFR1/NF-κB signaling pathways. Co-culturing BV2 cells with primary cortical neurons indicated that Lf-AG-NEs, similarly to CLI-095 and R7050, attenuated T. gondii-induced microglial activation and subsequent neuronal injury. In conclusion, the successfully prepared Lf-AG-NEs not only enhanced the anti-T. gondii effect but also strengthened the protective impact against neuronal injury induced by T. gondii, through the modulation of microglial signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpddr.2024.100575DOI Listing

Publication Analysis

Top Keywords

neuronal injury
16
lactoferrin-modified nanoemulsions
8
brain-targeting therapeutic
8
therapeutic efficacy
8
gondii-induced neuronal
8
anti-t gondii
8
induced gondii
8
bv2 cells
8
microglial activation
8
signaling pathways
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!