Targeted isolation of diketopiperazines from a deep-sea derived fungus with anti-neuroinflammatory effects.

Bioorg Chem

State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China. Electronic address:

Published: December 2024

Prenylated indole diketopiperazines represent a diverse array of alkaloids with complex chemical scaffolds and with a wide range of biological activities. Aiming to discover bioactive metabolites with structural novelty, genomic annotation in association with the MS/MS-based molecular networking demonstrated a deep-sea derived fungus Aspergillus puulaauensis F77 containing a profile of diketopiperazines. Targeted separation of the cultured fungus led to the isolation of 19 undescribed austamide-type diketopiperazines namely versicoines A-S. Their structures were elucidated by the 2D NMR data, in association with Snatzke'method, ECD calculations, and single-crystal X-ray diffraction data for configurational assignments. Versicoine N-S represent a unique class of austamide-type alkaloids with a spirocenter at C-3. Bioassay results demonstrated versicoine N and relevant analogs possessing inhibitory effects against NO production in LPS-stimulated BV-2 cells. Further mechanistic investigation demonstrated the significant inhibition of versicoine N against p65 expression and its nuclear translocation, along with the inhibition toward phosphorylation of IKK/IκB in NF-κB signaling pathway. In addition, versicoine N also inhibited NLRP3 inflammasome activation and its related proteins, including caspase 1, pro-caspase1, IL-1β and pro-IL-1β. This study largely extends the chemical diversity of austamide-type alkaloids, and provides promising lead compounds for anti-neuroinflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.108099DOI Listing

Publication Analysis

Top Keywords

deep-sea derived
8
derived fungus
8
austamide-type alkaloids
8
targeted isolation
4
diketopiperazines
4
isolation diketopiperazines
4
diketopiperazines deep-sea
4
fungus anti-neuroinflammatory
4
anti-neuroinflammatory effects
4
effects prenylated
4

Similar Publications

Three new terpenoid derivatives from the deep-sea-derived fungus DFFSCS007.

J Asian Nat Prod Res

December 2024

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Three new terpenoid derivatives (1,6,7)-hydrobenzosydowic acid (), (1 ,6,7)-hydrobenzosydowic acid (), and (7 ,10)-11-dehydroxy-iso-10-hydroxysydowic acid (), along with the known analogues ()-2-(1-(4-nitrobenzoyl)pyrrolidine-2-carboxamido)benzoic acid () and trihydroxybutyl ester of 4-carboxydiorcinol () were isolated from the deep-sea-derived fungus DFFSCS007. Their structures were determined by spectroscopic analysis. Compound with a nitrobenzene group was isolated from nature for the first time.

View Article and Find Full Text PDF

Targeted isolation of diketopiperazines from a deep-sea derived fungus with anti-neuroinflammatory effects.

Bioorg Chem

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China. Electronic address:

Prenylated indole diketopiperazines represent a diverse array of alkaloids with complex chemical scaffolds and with a wide range of biological activities. Aiming to discover bioactive metabolites with structural novelty, genomic annotation in association with the MS/MS-based molecular networking demonstrated a deep-sea derived fungus Aspergillus puulaauensis F77 containing a profile of diketopiperazines. Targeted separation of the cultured fungus led to the isolation of 19 undescribed austamide-type diketopiperazines namely versicoines A-S.

View Article and Find Full Text PDF

Eremophilane- and Acorane-Type Sesquiterpenes from the Deep-Sea Cold-Seep-Derived Fungus CS-280 Cultured in the Presence of Autoclaved QDIO-4.

Mar Drugs

December 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.

Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A-D (-) and two acorane analogues furacoranes A and B ( and ), were characterized from the culture extract of the cold-seep derived fungus CS-280 co-cultured with autoclaved QDIO-4. All the six compounds were highly oxygenated especially and with infrequent epoxyethane and tetrahydrofuran ring systems. The structures of - were established on the basis of detailed interpretation of 1D and 2D NMR and MS data.

View Article and Find Full Text PDF

Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for advancing sustainable agricultural practices. Butyrolactone-I (BTL-I), a bioactive compound derived from deep-sea fungi (Aspergillus), shows promise as a functional feed additive to combat heat stress in animals.

View Article and Find Full Text PDF

Deep sea microbial communities play a significant role in global biogeochemical processes. However, the depth-wise metabolic potential of microbial communities in hydrothermally influenced Central Indian Ridge (CIR) and Southwest Indian Ridge (SWIR) remains elusive. In this study, a comprehensive functional microarray-based approach was used to understand factors influencing the metabolic potential of microbial communities and depth-driven differences in microbial functional gene composition in CIR and SWIR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!