This paper investigates the efficient degradation of ciprofloxacin (CIP) in a sustainable γ-valerolactone (GVL) and water (H₂O) mixed system by controlling proton transfer and reducing the self-decay rate of Fe(VI). The kinetic model reveals that the GVL/H₂O system exhibits a rate constant of (9.7 ± 0.7) × 10 M⁻¹ s⁻¹, significantly higher than the (6.8 ± 0.5) × 10 M⁻¹ s⁻¹ observed in pure H₂O. Furthermore, the self-decay rate decreases from (3.1 ± 0.4) × 10⁻² s⁻¹ in H₂O to (1.4 ± 0.2) × 10⁻² s⁻¹ in the GVL/H₂O system. The role of Fe(IV)/Fe(V) in the degradation process was confirmed using dimethyl sulfoxide (DMSO). Dynamic light scattering (DLS) results indicated that GVL could confine water clusters within the range of 1.69-3.68 nm. Density functional theory (DFT) and theoretical calculations demonstrated that the nucleophilic site of CIP in the GVL/H₂O system shifted to the carboxyl group. The toxicity analysis of the degradation products underscored the significance of CIP transfer treatment. This study highlights using the green water treatment agent Fe(VI) and the biodegradable solvent GVL to effectively reduce environmental impact, presenting significant potential for environmental pollution control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122991 | DOI Listing |
Small
January 2025
Department of Chemistry, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Turkey.
Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability.
View Article and Find Full Text PDFClin Exp Med
January 2025
Immunology Department, Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany.
Adoptive cell therapy (ACT) using natural killer (NK) cells has emerged as a promising therapeutic strategy for acute myeloid leukemia (AML), addressing challenges such as chemotherapy resistance and high relapse rates. Over the years, clinical trials and studies have explored various sources of NK cells, including ex vivo expanded NK cell lines, CAR-NK cells, peripheral blood-derived NK cells, and umbilical cord blood-derived NK cells. These therapies have demonstrated varying degrees of therapeutic efficacy, ranging from transient anti-leukemia activity to sustained remission in select patient groups.
View Article and Find Full Text PDFWater Res
March 2025
Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
This paper investigates the efficient degradation of ciprofloxacin (CIP) in a sustainable γ-valerolactone (GVL) and water (H₂O) mixed system by controlling proton transfer and reducing the self-decay rate of Fe(VI). The kinetic model reveals that the GVL/H₂O system exhibits a rate constant of (9.7 ± 0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Biological and Processing for Bast Fiber Crops of Ministry of Agriculture and Rural Affairs, Engineering and Technology Center for Bast Fiber Crops of Hunan Province, Changsha 410205, China. Electronic address:
The inability to utilize pentose poses as a significant limitation to the production of cellulosic ethanol. To attain efficient raw material conversion and mitigate carbon dioxide emissions during cellulosic ethanol synthesis, a integrated approach focused on the co-processing of ethanol and succinic acid (SA) from peanut shells was proposed. The results demonstrated that the GVL system, containing 30 % water and catalyzed by dilute sulfuric acid, exhibited remarkable efficiency in pretreatment, boosting glucose yield sixfold relative to the untreated raw material.
View Article and Find Full Text PDFHematology Am Soc Hematol Educ Program
December 2024
Division of Hematology, Department of Medicine and Surgery, University of Perugia, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!