Calcidiol (25(OH)VD) and calcitriol (1α,25(OH)VD) are active vitamin D with high medicinal value, which can maintain calcium and phosphorus balance and treat vitamin D deficiency. Microbial synthesis is an important method to produce high-value-added compounds. It can produce active vitamin D through the hydroxylation reaction of P450, which can reduce the traditional chemical synthesis steps, and greatly improve the production efficiency and economic benefits. In this work, Bacillus megaterium H-1 was screened for its ability to produce 25(OH)VD and 1α,25(OH)VD from vitamin D. A new highly inducible vitamin D hydroxylase CYP109E1-H was identified from B. megaterium H-1 through searching for transcripts with cytochrome P450 structural domains, combining the transcriptome sequencing with functional expression in Bacillus subtilis WB600. Biotransformation in recombinant B. subtilis confirmed that CYP109E1-H has C-25 hydroxylase activity towards vitamin D. CYP109E1-H is a natural mutant of CYP109E1 with greater stereoselectivity and it is a new vitamin D mono-hydroxylase. The cloning and characterization of the CYP109E1-H gene provide useful information on the structural basis for improving the regional and stereoselectivity of the CYP109E gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2024.110578 | DOI Listing |
Enzyme Microb Technol
December 2024
College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
Calcidiol (25(OH)VD) and calcitriol (1α,25(OH)VD) are active vitamin D with high medicinal value, which can maintain calcium and phosphorus balance and treat vitamin D deficiency. Microbial synthesis is an important method to produce high-value-added compounds. It can produce active vitamin D through the hydroxylation reaction of P450, which can reduce the traditional chemical synthesis steps, and greatly improve the production efficiency and economic benefits.
View Article and Find Full Text PDFChemosphere
August 2024
Plant Ecology and Environment Technologies, CSIR- National Botanical Research Institute, Lucknow, India. Electronic address:
This study explored the degradation potential of a yeast strain, Meyerozyma caribbica, alone and in combination with Bacillus velezensis and Priestia megaterium, found novel for lindane biodegradation. Isolated from hexachlorocyclohexane (HCH)-contaminated sites, M. caribbica, B.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Unité de Recherche ABTE, (Alimentation-Bioprocédés-Toxicologie-Environnements), EA 4651, Esplanade de la Paix, Université de Caen Normandie, 14032 Caen Cedex 5, France.
Polyhydroxyalkanoates (PHA) are bioplastics which are well known as intracellular energy storage compounds and are produced in a large number of prokaryotic species. These bio-based inclusions are biodegradable, biocompatible and environmental friendly. Industrial production of, short chain and medium chain length PHA, involves the use of microorganisms and their enzymes.
View Article and Find Full Text PDFN Biotechnol
March 2021
University of Natural Resources and Life Sciences, Vienna, Institute of Environmental Biotechnology, Tulln an der Donau, Austria. Electronic address:
Due to high manufacturing costs, industrial production and application of bio-based polyhydroxyalkanoates (PHA) as bioplastics remain below the expected potential. Improving yields and productivities during biotechnological production will contribute to eliminating existing shortcomings and should therefore be a priority in process development with new strains and substrates. The present study investigates key parameters such as different nutrient and oxygen limitation strategies and the salinity and type of salt to determine their impact on growth and poly(3-hydroxybutyrate) (P(3HB)) formation behaviour of Bacillus megaterium.
View Article and Find Full Text PDFBioprocess Biosyst Eng
February 2021
Department of Chemical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey.
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters accumulated in a wide variety of microorganisms as intracellular carbon and energy storage compounds. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most valuable biopolymers because of its superior mechanical properties. Here, we developed a bioprocess utilizing recombinant Bacillus megaterium strain for PHBV over-production from glucose, without any precursor addition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!