Beneficial interactions between plant root exudates and the rhizosphere microbial community can alleviate the adverse effects of environmental stress on crop yields, but these interactions remain poorly understood in potato growing in drying soil. We investigated the responses of rhizosphere soil microorganisms and metabolites, and biochemical and physiological responses of two potato genotypes with contrasting drought tolerance (drought tolerant 'C93' and drought sensitive 'Favorita'), to two different irrigation treatments imposing contrasting soil water availability in the field. Deficit irrigation altered rhizosphere soil bacterial communities and metabolites of C93 more than Favorita. While the abundance of Nitrosospira and Nitrobacter belonging to the Proteobacteria increased in C93, in Favorita the Streptomyces and Nocardioides belonging to the Actinobacteria increased. These microbial changes were significantly correlated with rhizosphere organic acid concentrations, with 3-phenyllactic acid increasing in C93, and citric acid increasing in Favorita. Although deficit irrigation restricted shoot growth of C93 at the tuber initiation stage (unlike Favorita), its specific root length was 41% greater than Favorita irrespective of irrigation treatment. Deficit irrigation significantly increased foliar chlorophyll and proline accumulation of both genotypes, with the latter 28% higher in Favorita. Independent of irrigation treatment, yield of the more vigorous C93 (producing 22 and 89% more shoot biomass under deficit and full irrigation respectively) was 84% higher than Favorita. It was concluded that different potato genotypes selectively recruit beneficial microorganisms by secreting different organic acids to alleviate the adverse effects of deficit irrigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123836 | DOI Listing |
Sci Rep
December 2024
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
The cultivation of common beans (Phaseolus vulgaris L.) in semi-arid regions is affected by drought. To explore potential alleviation strategies, we investigated the impact of inoculation with Bacillus velezensis, and the application of acetylsalicylic acid (ASA) via foliage application (FA), which promote plant growth and enhance stress tolerance.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Zhongguancun South Street, Haidian District, Beijing, 100081, PR China.
Beneficial interactions between plant root exudates and the rhizosphere microbial community can alleviate the adverse effects of environmental stress on crop yields, but these interactions remain poorly understood in potato growing in drying soil. We investigated the responses of rhizosphere soil microorganisms and metabolites, and biochemical and physiological responses of two potato genotypes with contrasting drought tolerance (drought tolerant 'C93' and drought sensitive 'Favorita'), to two different irrigation treatments imposing contrasting soil water availability in the field. Deficit irrigation altered rhizosphere soil bacterial communities and metabolites of C93 more than Favorita.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Irrigation Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Murcia, Spain.
The real-time monitoring of plant water status is an important issue for digital irrigation to increase water productivity. This work focused on a comparison of three biosensors that continuously evaluate plant water status: trunk microtensiometers (MTs), trunk time-domain reflectometry (TDR), and LVDT sensors. During the summer and autumn seasons (DOY 150-300), nectarine trees were subjected to four different consecutive irrigation periods based on the soil Management Allowed Deficit (MAD) concept, namely: MAD (light deficit); MAD (moderate deficit); MAD (severe deficit), and MAD (full irrigation).
View Article and Find Full Text PDFFront Plant Sci
December 2024
Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Narrabri, NSW, Australia.
Introduction: Crop yields in food and fibre production systems throughout the world are significantly limited by soil water deficits. Identifying water conservation mechanisms within existing genotypes is pivotal in developing varieties with improved performance in water-limited conditions. The objective of this study was to screen Australian germplasm for variability in the transpiration response to progressive soil drying using a glasshouse dry-down experiment.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Grapevine, as a globally significant economic fruit tree, is highly sensitive to water stress, which not only damages its growth but also affects the formation of fruit quality. Melatonin (MT), acting as a signaling molecule, plays a crucial role in plant stress responses. However, the regulatory mechanisms of MT on grape leaf physiological characteristics and fruit quality under different irrigation amounts have not been fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!