Gelatin, a natural and edible polymer, has attracted wide attention for use in food and edible packaging applications. However, its inadequate properties, especially poor flexibility, limit its broader utilization. Hybridizing different polymers is a promising strategy to achieve enhanced properties. Herein, the microstructure and characteristics of gelatin/curdlan film-forming solutions and the resulting films were systematically characterized. Effective interaction between curdlan and gelatin can be shown by a homogeneous phase morphology and increased helix-coil transition temperature. The strong interactions between gelatin and curdlan results in a well-integrated polymer network, significantly influence gelatin's properties. In particular, the samples containing higher proportion of curdlan exhibited increased elongation at break, suggesting enhanced flexibility. Overall, this research presents a promising way for improving gelatin's ductility, enhancing its potential for food-related and broader applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.142567 | DOI Listing |
Food Chem
December 2024
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Shandong Ensign Industry Co., Ltd., Weifang, Shandong 262409, China. Electronic address:
Gelatin, a natural and edible polymer, has attracted wide attention for use in food and edible packaging applications. However, its inadequate properties, especially poor flexibility, limit its broader utilization. Hybridizing different polymers is a promising strategy to achieve enhanced properties.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics, Kyungpook National University, Daegu, South Korea.
The freely jointed chain model with reversible hinges (rFJC) is the simplest theoretical model, which captures reversible transitions of the local bending stiffness along the polymer chain backbone (e.g., helix-coil-type of local conformational changes or changes due to the binding/unbinding of ligands).
View Article and Find Full Text PDFCarbohydr Polym
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Demonstration Center for Experimental Food Science and Engineering Education (China Agricultural University), Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China. Electronic address:
Nucleic Acids Res
November 2024
Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain.
Base stacking is crucial in nucleic acid stabilization, from DNA duplex hybridization to single-stranded DNA (ssDNA) protein binding. While stacking energies are tiny in ssDNA, they are inextricably mixed with hydrogen bonding in DNA base pairing, making their measurement challenging. We conduct unzipping experiments with optical tweezers of short poly-purine (dA and alternating dG and dA) sequences of 20-40 bases.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!