Spinosyns are secondary metabolites produced by known for their potent insecticidal properties and broad pesticidal spectrum. We report significant advancements in spinosyn biosynthesis achieved through a genome combination improvement strategy in . By integrating modified genome shuffling with ultraviolet mutation and multiomics analysis, we developed a high-yield spinosyn strain designated as YX2. The levels of most proteins and metabolites linked to primary metabolism and spinosyn biosynthesis were greater in this strain than those in . Based on these insights, we overexpressed 15 relevant functional genes to enhance the conversion of fatty acids into acetyl-coenzyme A. Notably, the overexpression of (YX2_3432) significantly increased the spinosyn yield, reaching 1120 ± 108 mg/L, which is about 12 times higher than that produced by . This study presents a valuable and straightforward strategy that can be broadly applied to enhance the production of secondary metabolites in actinomycetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c07768 | DOI Listing |
J Agric Food Chem
January 2025
Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.
Spinosyns are secondary metabolites produced by known for their potent insecticidal properties and broad pesticidal spectrum. We report significant advancements in spinosyn biosynthesis achieved through a genome combination improvement strategy in . By integrating modified genome shuffling with ultraviolet mutation and multiomics analysis, we developed a high-yield spinosyn strain designated as YX2.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA. Electronic address:
New insecticides prequalified for malaria control interventions include modulators of nicotinic acetylcholine receptors that act selectively on different subunits leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergist test with piperonyl butoxide revealed that the sister taxa, Anopheles gambiae and An.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões | Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal. Electronic address:
Spintor® (SPIT®) is a commercial formulation of a bioinsecticide with the active ingredient Spinosad (SPIN). Despite the efforts of regulatory agencies, there still is a lack of information regarding short- and long-term exposures to soil-dwellers, as well as effects at environmentally relevant concentrations. This work aimed to evaluate the effects of SPIT® and SPIN, on the oligochaete Eisenia fetida, and the arthropod Folsomia candida.
View Article and Find Full Text PDFPest Manag Sci
December 2024
EcoZone International, Riverside, CA, USA.
Background: Spinosad consists of spinosyn A and spinosyn D that are produced by the soil-dwelling actinomycete Saccharopolyspora spinosa. It has been used to control a wide variety of arthropod pests of economic importance. Formulations of spinosad have been used to control larval mosquitoes since approximately 2010.
View Article and Find Full Text PDFSci Rep
August 2024
Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
Malaria remains one of the highest causes of morbidity and mortality, with 249 million cases and over 608,000 deaths in 2022. Insecticides, which target the Anopheles mosquito vector, are the primary method to control malaria. The widespread nature of resistance to the most important insecticide class, the pyrethroids, threatens the control of this disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!