The efficacy of tumor-targeted therapeutics, engineered to engage specific cellular receptors to promote accumulation and penetration, is strongly influenced by the carrier's affinity for its target and the valency of binding molecules incorporated into the carrier. Previous research has primarily focused on improving targeting by augmenting the number of binding proteins on the carrier, inadvertently raising avidity without isolating the individual effects of binding strength and valency. Herein, we precisely evaluate the impact of multivalency on tumor targeting with a recombinant approach to independently control valency, avidity, and size. Our findings reveal that constructs with equivalent binding strength exhibit comparable receptor engagement and tumor extravasation, regardless of valency. Moreover, excessive avidity adversely affected tumor accumulation and penetration, with the highest-avidity construct showing diminished exposure. These results indicate that overall binding strength, not valency, is the primary determinant of tumor targeting, providing valuable insights for designing effective macromolecular drug carriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.4c01303 | DOI Listing |
Biomacromolecules
December 2024
Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States.
The efficacy of tumor-targeted therapeutics, engineered to engage specific cellular receptors to promote accumulation and penetration, is strongly influenced by the carrier's affinity for its target and the valency of binding molecules incorporated into the carrier. Previous research has primarily focused on improving targeting by augmenting the number of binding proteins on the carrier, inadvertently raising avidity without isolating the individual effects of binding strength and valency. Herein, we precisely evaluate the impact of multivalency on tumor targeting with a recombinant approach to independently control valency, avidity, and size.
View Article and Find Full Text PDFMar Drugs
December 2024
Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal muscle atrophy. Following immobilization, the mice were administrated orally with saline or fucosterol (10 or 30 mg/kg/day) for 1 week.
View Article and Find Full Text PDFJCEM Case Rep
January 2025
Department of Internal Medicine, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands.
A defect in the canonical Wnt-β-catenin pathway may lead to reduced bone strength and increased fracture risk. Sclerostin is a key inhibitor of this pathway by binding to low-density lipoprotein (LDL) receptor-related protein , thereby reducing bone formation. The effectiveness of romosozumab, a human monoclonal antibody that binds sclerostin and prevents this inhibitory effect, has been questioned in patients with inactivating genetic variants in or .
View Article and Find Full Text PDFCureus
November 2024
Microbiology, Madras Medical College, Rajiv Gandhi Government General Hospital, Chennai, IND.
Introduction Cytomegalovirus (CMV) is often associated with mortality and significant morbidity following renal transplantation leading to graft rejection or dysfunction. Primary CMV infection refers to the first detection of the virus in a person who has no prior evidence of CMV exposure before transplantation. CMV has a unique property called latency.
View Article and Find Full Text PDFPhysiol Rep
December 2024
Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
Fatty acid binding protein 4 (FABP4) is highly expressed in adipocytes. Lipolysis, caused by an elevated adrenergic input, has been suggested to contribute to elevated serum FABP4 levels in patients with cardiovascular diseases. However, the relationship between the serum FABP4 and efferent sympathetic nerve activity remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!