Analysis of time-of-flight secondary ion mass spectrometry data of human skin treated with diclofenac using sparse autoencoder.

Anal Bioanal Chem

Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.

Published: December 2024

Methods that facilitate molecular identification and imaging are required to evaluate drug penetration into tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), which has high spatial resolution and allows 3D distribution imaging of organic materials, is suitable for this purpose. However, the complexity of ToF-SIMS data, which includes nonlinear factors, makes interpretation challenging. Therefore, in this study, ToF-SIMS data of a stratum corneum treated with diclofenac were analyzed using machine learning to enable the evaluation of drug distribution. Diclofenac-related mass peaks were identified using autoencoder results, and the degree of penetration was evaluated across 2-20 stripped tapes. In addition, the permeation pathway was clarified by comparing the secondary ion images of phosphatidylethanolamine (PhEA; a marker of the inside of the cell); cholesterol, which is abundant in cell membranes; and diclofenac. Based on the biomolecule-related ion images showing the penetration pathway of diclofenac applied to the skin, diclofenac penetrates both the extracellular space and inside cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-024-05711-0DOI Listing

Publication Analysis

Top Keywords

secondary ion
12
time-of-flight secondary
8
ion mass
8
mass spectrometry
8
treated diclofenac
8
tof-sims data
8
ion images
8
diclofenac
5
analysis time-of-flight
4
ion
4

Similar Publications

This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.

View Article and Find Full Text PDF

Dentin hypersensitivity is primarily caused by the exposure of dentinal tubules due to various factors, so the key to treatment is to effectively seal these exposed tubules. However, traditional dentinal tubule sealants used in clinical practice often fail to adhere securely to the tubule surface when exposed to external stimuli, resulting in a recurrence of sensitivity. In this study, we developed a silicon micromotor that moved autonomously and loaded with silver nanoparticles and a photosensitive adhesive for dentin sensitivity therapy.

View Article and Find Full Text PDF

[Serum pharmacochemistry of Panacis Japonici Rhizoma extract based on UPLC-Q-Exactive Orbitrap-MS].

Zhongguo Zhong Yao Za Zhi

December 2024

Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University Yichang 443002, China College of Medicine and Health Sciences, China Three Gorges University Yichang 443002, China.

In this study, the chemical components of Panacis Japonici Rhizoma extract and absorbed components in rats were identified by ultra-high performance liquid chromatography-quadrupole exactive orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS). The separation was performed by gradient elution on Waters UPLC BEH C_(18) column(2.1 mm×100 mm, 1.

View Article and Find Full Text PDF

Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!