Tuberculosis (TB) is a global health challenge associated with considerable levels of illness and mortality worldwide. The development of innovative therapeutic strategies is crucial to combat the rise of drug-resistant TB strains. DNA Gyrase A (GyrA) and serine/threonine protein kinase (PknB) are promising targets for new TB medications. This study employed techniques such as similarity searches, molecular docking analyses, machine learning (ML)-driven absolute binding-free energy calculations, and molecular dynamics (MD) simulations to find potential drug candidates. By combining ligand- and structure-based methods with ML principles and MD simulations, a novel strategy was proposed for identifying small molecules. Drugs with structural similarities to existing TB therapies were assessed for their binding affinity to GyrA and PknB through various docking approaches and ML-based predictions. A detailed analysis identified six promising compounds for each target, such as DB00199, DB01220, DB06827, DB11753, DB14631, and DB14703 for GyrA; and DB00547, DB00615, DB06827, DB14644, DB11753, and DB14703 for PknB. Notably, DB11753 and DB14703 show significant potential for both targets. Furthermore, MD simulations' statistical metrics confirm the drug-target complexes' stability, with MM-GBSA analyses underscoring their strong binding affinity, indicating their promise for TB treatment even though they were not initially designed for this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679129PMC
http://dx.doi.org/10.3390/tropicalmed9120288DOI Listing

Publication Analysis

Top Keywords

dna gyrase
8
serine/threonine protein
8
protein kinase
8
kinase pknb
8
binding affinity
8
db11753 db14703
8
identification anti-tuberculosis
4
anti-tuberculosis drugs
4
drugs targeting
4
targeting dna
4

Similar Publications

The escalating prevalence of antibiotic-resistant bacteria has led to a serious global public health problem; therefore, there is an urgent need for the development of structurally innovative antibacterial agents. In our study, different series of tetra-substituted thiophene derivatives were designed and synthesized by multi-component reactions (MCRs) in moderate to excellent yields. Some of the designed final compounds were synthesized by both microwave assisted method and traditional synthesis.

View Article and Find Full Text PDF

A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.

View Article and Find Full Text PDF

Novel Antibacterial 4-Piperazinylquinoline Hybrid Derivatives Against : Design, Synthesis, and In Vitro and In Silico Insights.

Molecules

December 2024

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!