Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment. In this work, composite anion exchange membranes are prepared from poly (2,6-dimethyl-1,4-phenylene oxide) with quaternary ammonium groups on long-side chains (PPO-LC) and exfoliated Mg/Al lamellar double hydroxide (LDH) as inorganic filler added in different percentages (2, 5, and 10%). The mechanical stiffness of the membranes increases significantly by the addition of exfoliated LDH up to 5%. The ionic conductivity is measured as a function of the temperature in fully humidified conditions and as a function of relative humidity (RH). The maximum conductivity is observed for 5% LDH. The average activation energy for conductivity amounts to 0.20 ± 0.01 eV in fully humidified conditions and >50% RH. Thermogravimetric analysis of membranes before and after alkaline degradation tests (2 M KOH @ 80 °C, 48 h) reveals that the sample with 5% LDH has improved stability (19% vs. 36% of degradation). The stability tests are also investigated, measuring the ionic conductivity and the water uptake. A protective effect of LDH on the alkaline degradation of quaternary ammonium groups is clearly evidenced and opens the way to the use of different compounds and exfoliation methods in the LDH family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/membranes14120275 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!