Purpose: The retina contains the highest concentration of the omega 3 fatty acid, docosahexaenoic acid (DHA), in the body. Although epidemiologic studies showed an inverse correlation between the consumption of omega 3 fatty acids and the prevalence of diabetic retinopathy, there are no data showing the effect of diabetes on retinal DHA in humans. In this study, we measured the DHA content of the retina in diabetic and non-diabetic humans as well as mice and determined the effect of diabetes on retinal thickness and function in mice.
Methods: Fatty acid composition was determined by gas chromatography/mass spectroscopy. Retinal thickness in mice was measured by optical coherence tomography and retinal function was measured by electroretinogram (ERG). Expression of selected genes involved in inflammation and lipid metabolism was determined by quantitative real-time PCR (qRT-PCR).
Results: We found a 40% reduction of DHA in peripheral retina and a 25% reduction in the macula of diabetic humans compared with nondiabetic controls. There was a 24% reduction in retinal DHA of type 2 diabetic mice (db/db) compared with the controls (db/+). The retinal thickness was significantly decreased in db/db mice, especially in the inner retina, and the ERG b-wave amplitudes were significantly attenuated. Increased expression of proinflammatory genes was observed in both human and mouse diabetic retinas.
Conclusions: Retinal DHA is reduced in diabetic humans and mice, which is associated with a thinning of retina and functional defects in diabetic mice. Enriching retinal DHA through diet may be beneficial in the prevention and treatment of diabetic retinopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.65.14.39 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!