Helotiales, a diverse fungal order within Leotiomycetes (Ascomycota), comprises over 6000 species occupying varied ecological niches, from plant pathogens to saprobes and symbionts. Despite their importance, their genetic adaptations to temperature and environmental conditions are understudied. This study investigates temperature adaptations in infection genes and substrate degradation genes through a comparative genomics analysis of 129 Helotiales species, using the newly sequenced genomes of and . Key gene families such as cytochrome P450 enzymes, virulence factors, effector proteins, and carbohydrate-active enzymes (CAZymes) were analyzed to understand their roles in temperature and lifestyle adaptations, uncovering possible alternative lifestyle mechanisms. Our findings reveal that Helotiales fungi possess genes associated with nutrient acquisition, pathogenicity, and symbiotic relationships strongly adapted to cold environments that might be impacted by global warming. On the other hand, some species demonstrate potential for adaptation to warmer climates, suggesting increased activity in response to global warming. This study reveals the adaptive mechanisms enabling Helotiales fungi to thrive in both cold and warm environments. These findings provide valuable insights into their ecological success and evolutionary resilience, which may facilitate their ability to transition between pathogenic, symbiotic, and saprobic phases in response to changing environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.3390/jof10120869DOI Listing

Publication Analysis

Top Keywords

comparative genomics
8
environmental conditions
8
helotiales fungi
8
global warming
8
helotiales
5
genomics lifestyle
4
lifestyle fungi
4
fungi helotiales
4
helotiales leotiomycetes
4
leotiomycetes reveals
4

Similar Publications

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a dNTP hydrolase important for intracellular dNTP homeostasis and serves as tumor suppressor and modulator of antimetabolite efficacy in cancer, though largely unexplored in breast cancer (BC). A cohort of patients with early BC (n = 564) with available gene expression data (GEP) was used. SAMHD1 protein expression was assessed by immunohistochemistry performed on tissue microarrays.

View Article and Find Full Text PDF

Genetic Association of Juvenile Idiopathic Arthritis With Adult Rheumatic Disease.

JAMA Netw Open

December 2024

Department of Cell Biology, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Importance: Patients with juvenile idiopathic arthritis (JIA) may develop adult rheumatic diseases later in life, and prolonged or recurrent disease activity is often associated with substantial disability; therefore, it is important to identify patients with JIA at high risk of developing adult rheumatic diseases and provide specialized attention and preventive care to them.

Objective: To elucidate the full extent of the genetic association of JIA with adult rheumatic diseases, to improve treatment strategies and patient outcomes for patients at high risk of developing long-term rheumatic diseases.

Design, Setting, And Participants: In this genetic association study of 4 disease genome-wide association study (GWAS) cohorts from 2013 to 2024 (JIA, rheumatoid arthritis [RA], systemic lupus erythematosus [SLE], and systemic sclerosis [SSc]), patients in the JIA cohort were recruited from the US, Australia, and Norway (with a UK cohort included in the meta-analyzed cohort), while patients in the other 3 cohorts were recruited from US and Western European countries.

View Article and Find Full Text PDF

GeniePool 2.0: advancing variant analysis through CHM13-T2T, AlphaMissense, gnomAD V4 integration, and variant co-occurrence queries.

Database (Oxford)

December 2024

The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.

Originally developed to meet the challenges of genomic data deluge, GeniePool emerged as a pioneering platform, enabling efficient storage, accessibility, and analysis of vast genomic datasets, enabled due to its data lake architecture. Building on this foundation, GeniePool 2.0 advances genomic analysis through the integration of cutting-edge variant databases, such as CHM13-T2T, AlphaMissense, and gnomAD V4, coupled with the capability for variant co-occurrence queries.

View Article and Find Full Text PDF

Application of Proteomic Methods in Oomycete Biology.

Methods Mol Biol

December 2024

The Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.

The biochemical makeup of any organism provides insight into key factors regarding its biological functions. These factors can be explored using proteomics, which allows us to obtain a snapshot of the protein content and abundance in an organism, cell type or sub-cellular compartment. Here, we describe proteomic methodologies that can be used to dissect the biochemical mechanism of phytopathogenicity in oomycetes.

View Article and Find Full Text PDF

We describe a protocol to amplify DNA barcodes of known and unknown taxa of Phytophthora and related plant pathogenic oomycetes from a range of environments. The methods focus on sampling pathogen propagules from water using in situ sampling and filtration equipment and buffers that enable efficient storage and DNA extraction for later downstream processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!