To determine the compatibility of two new biocontrol fungi with common chemical pesticides, this study examined the effects of three insecticides, namely, avermectin, imidacloprid, and acetamiprid, and three fungicides, namely, chlorogenonil, boscalid, and kasugamycin, on the mycelial growth and spore germination of strains IF-1106 and IJ-tg19. The insecticidal effects of mixed insecticides or fungicides with good compatibility with IJ-tg19 against were tested. The results showed that the six chemical pesticides exerted different degrees of inhibition on the mycelial growth of both strains, with an obvious dose-dependent effect. The inhibitory effect of chlorothalonil on the mycelial growth of IF-1106 and IJ-tg19 was greater than 75%. Different kinds and concentrations of chemical pesticides had significant effects on spore germination. Among them, acetamiprid had little inhibitory effect on spores. Therefore, the two strains exhibited good compatibility with the insecticide acetamiprid and had some compatibility with avermectin and imidacloprid. Among the fungicides, the compatibility of the two strains of biocontrol fungi was the best with kasugamycin, followed by boscalid, while their compatibility with chlorothalonil showed the least compatibility. The median lethal time (LT) of five concentrations of IJ-tg19 (1 × 10, 1 × 10, 1 × 10, 1 × 10, and 1 × 10 spore/mL) mixed with acetamiprid against were 5.28, 4.56, 3.80, 2.73, and 2.13 days, respectively, and the insecticidal rate was higher than that of fungus treatment alone (5.19, 4.59, 4.05, 3.32, and 2.94 days, respectively) or chemical pesticide treatment (5.36 days). This study provides data support and a theoretical basis for reducing the use of chemical pesticides, improving the efficiency of -based insecticides, and optimizing the synergistic use of fungi and chemical pesticides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677660 | PMC |
http://dx.doi.org/10.3390/jof10120852 | DOI Listing |
Small Methods
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.
Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Nazarbayev University, Astana, 010000, Kazakhstan.
The rapid growth in the global population has led to increased environmental pollution and energy demands, exacerbating the issue of environmental contamination. This contamination is significantly impacted by various types of pesticides found in water sources, which pose serious health risks to humans, animals, and aquatic ecosystems. In response, extensive research into water treatment technologies has been conducted, focusing on efficient methods to remove these pollutants, with advanced oxidation processes and the utilization of tungsten trioxide (WO) as a photocatalyst showing promising results.
View Article and Find Full Text PDFHeliyon
January 2025
Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary.
The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!