Microscopic image segmentation (MIS) is a fundamental task in medical imaging and biological research, essential for precise analysis of cellular structures and tissues. Despite its importance, the segmentation process encounters significant challenges, including variability in imaging conditions, complex biological structures, and artefacts (e.g., noise), which can compromise the accuracy of traditional methods. The emergence of deep learning (DL) has catalyzed substantial advancements in addressing these issues. This systematic literature review (SLR) provides a comprehensive overview of state-of-the-art DL methods developed over the past six years for the segmentation of microscopic images. We critically analyze key contributions, emphasizing how these methods specifically tackle challenges in cell, nucleus, and tissue segmentation. Additionally, we evaluate the datasets and performance metrics employed in these studies. By synthesizing current advancements and identifying gaps in existing approaches, this review not only highlights the transformative potential of DL in enhancing diagnostic accuracy and research efficiency but also suggests directions for future research. The findings of this study have significant implications for improving methodologies in medical and biological applications, ultimately fostering better patient outcomes and advancing scientific understanding.

Download full-text PDF

Source
http://dx.doi.org/10.3390/jimaging10120311DOI Listing

Publication Analysis

Top Keywords

deep learning
8
microscopic image
8
image segmentation
8
segmentation
5
state-of-the-art deep
4
methods
4
learning methods
4
methods microscopic
4
segmentation applications
4
applications cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!