This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used. Teeth were restored with Beautifil Flow Plus F00 with S-PRG filler (BFP) and flowable resin composite with silica filler (E-BFP). μTBS was evaluated after 24 h and 6 months of water storage. WS and SL measurement followed ISO 4049:2019; spectroscopy measured DC; ICP-MS evaluated ion release. BBX and FBII presented the highest DC. The adhesives did not comply with the WS ISO requirements, but the bonding resin of 2-SEAs complied with the SL threshold. BFP released more ions than E-BFP. BFP positively affected the μTBS of UAs, regardless of HEMA concentration after 24 h, comparable to the 2-SEAs. The 6 months μTBS decrease depended on the adhesive and RC combination. HEMA did not affect the μTBS of UAs, while bioactive resins had a positive impact.

Download full-text PDF

Source
http://dx.doi.org/10.3390/jfb15120379DOI Listing

Publication Analysis

Top Keywords

s-prg filler
12
universal adhesives
8
resin composite
8
ion release
8
hema modified
8
μtbs uas
8
hema
6
μtbs
5
long-term dentin
4
dentin bonding
4

Similar Publications

This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used.

View Article and Find Full Text PDF

Background: Dental caries remains a significant oral health concern, particularly in young children. With an increasing interest in preventive strategies, pediatric and preventive dentistry research is now more focused on developing newer materials and techniques to coat the primary teeth to prevent the onset of new carious lesions. While traditional preventive measures such as fluoride application and sealants have been effective in reducing caries incidence, there is still a need for innovative approaches.

View Article and Find Full Text PDF

This study aimed to evaluate ionic release, flexural strength and water absorption of UDMA resins containing 0-30 wt% surface pre-reacted glass-ionomer (S-PRG) filler fabricated by a DLP 3D printer. Release of Al, B, Na, Sr and F ions were measured by inductively coupled plasma (ICP) and an ion meter. Flexural strength test and water absorption measurements were performed according to the International Organization for Standardization (ISO) 4049 standard and ISO 1567 standard, respectively.

View Article and Find Full Text PDF

Background: Pit and fissure sealant is a micro-invasive modality for treating deep and retentive pits and fissures to prevent and/or stop occlusal caries. Every effort needs to be done to enhance sealant retention and survival. The aim of this research is to assess the retention rate of giomer S-PRG filler containing pit and fissure sealant applied with or without etching.

View Article and Find Full Text PDF

The treatment of damaged enamel surfaces involves modification of the enamel surface with artificial materials or the development of a pseudo-enamel, with research focusing on bioactive and biomimetic materials. In this study, a bioactive auto-polymerizing resin (APR) was developed by adding surface-pre-reacted glass ionomer (S-PRG) fillers of different quantities to APR. Its bioactive effects were evaluated via pH neutralization, ion release, and inhibition of enamel demineralization studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!