Targeting Reactive Oxygen Species for Diagnosis of Various Diseases.

J Funct Biomater

Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.

Published: December 2024

Reactive oxygen species (ROS) are generated predominantly during cellular respiration and play a significant role in signaling within the cell and between cells. However, excessive accumulation of ROS can lead to cellular dysfunction, disease progression, and apoptosis that can lead to organ dysfunction. To overcome the short half-life of ROS and the relatively small amount produced, various imaging methods have been developed, using both endogenous and exogenous means to monitor ROS in disease settings. In this review, we discuss the molecular mechanisms underlying ROS production and explore the methods and materials that could be used to detect ROS overproduction, including iron-based materials, ROS-responsive chemical bond containing polymers, and ROS-responsive molecule containing biomaterials. We also discuss various imaging and imaging techniques that could be used to target and detect ROS overproduction. We discuss the ROS imaging potentials of established clinical imaging methods, such as magnetic resonance imaging (MRI), sonographic imaging, and fluorescence imaging. ROS imaging potentials of other imaging methods, such as photoacoustic imaging (PAI) and Raman imaging (RI) that are currently in preclinical stage are also discussed. Finally, this paper focuses on various diseases that are associated with ROS overproduction, and the current and the future clinical applications of ROS-targeted imaging. While the most widely used clinical condition is cardiovascular diseases, its potential extends into non-cardiovascular clinical conditions, such as neurovascular, neurodegenerative, and other ROS-associated conditions, such as cancers, skin aging, acute kidney injury, and inflammatory arthritis.

Download full-text PDF

Source
http://dx.doi.org/10.3390/jfb15120378DOI Listing

Publication Analysis

Top Keywords

imaging
13
imaging methods
12
ros overproduction
12
ros
10
reactive oxygen
8
oxygen species
8
detect ros
8
ros imaging
8
imaging potentials
8
targeting reactive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!