Stem cells have been widely used to produce artificial bone grafts. Nonetheless, the variability in the degree of stem cell differentiation is an inherent drawback of artificial graft development and requires robust evaluation tools that can certify the quality of stem cell-based products and avoid source-tissue-related and patient-specific variability in outcomes. Omics analyses have been utilised for the evaluation of stem cell attributes in all stages of stem cell biomanufacturing. Herein, metabolomics in combination with machine learning was utilised for the benchmarking of osteogenic differentiation quality in 2D and 3D cultures. Metabolomics analysis was performed with the use of gas chromatography-mass spectrometry (GC-MS). A set of 11 metabolites was used to train an XGboost model which achieved excellent performance in distinguishing between differentiated and undifferentiated umbilical cord blood mesenchymal stem cells (UCB MSCs). The model was benchmarked against samples not present in the training set, being able to efficiently capture osteogenesis in 3D UCB MSC cultures with an area under the curve (AUC) of 82.6%. On the contrary, the model did not capture any differentiation in Wharton's Jelly MSC samples, which are well-known underperformers in osteogenic differentiation (AUC of 56.2%). Mineralisation was significantly correlated with the levels of fumarate, glycerol, and myo-inositol, the four metabolites found most important for model performance (R = 0.89, R = 0.94, and R = 0.96, and = 0.016, = 0.0059, and = 0.0022, respectively). In conclusion, our results indicate that metabolomics in combination with machine learning can be used for the development of reliable potency assays for the evaluation of Advanced Therapy Medicinal Products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680063 | PMC |
http://dx.doi.org/10.3390/jfb15120367 | DOI Listing |
Curr Neuropharmacol
January 2025
Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Str, 02-106 Warsaw, Poland.
The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Amity Institute of Pharmacy, Amity University Haryana Chemistry Gurugram India.
Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.
Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.
Curr Vasc Pharmacol
January 2025
Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
The adventitia, the artery's most intricate layer, has received little attention.. During atherosclerosis, adventitia components undergo significant changes, such as angiogenesis, lymphangiogenesis, Artery Tertiary Lymphoid Organ (ATLO) formation, axon density increase, fibroblast activation, and stem cell differentiation.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.
Adv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!