Machine Learning and Metabolomics Predict Mesenchymal Stem Cell Osteogenic Differentiation in 2D and 3D Cultures.

J Funct Biomater

BioMedical Systems Engineering Laboratory, Panoz Institute, School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland.

Published: December 2024

Stem cells have been widely used to produce artificial bone grafts. Nonetheless, the variability in the degree of stem cell differentiation is an inherent drawback of artificial graft development and requires robust evaluation tools that can certify the quality of stem cell-based products and avoid source-tissue-related and patient-specific variability in outcomes. Omics analyses have been utilised for the evaluation of stem cell attributes in all stages of stem cell biomanufacturing. Herein, metabolomics in combination with machine learning was utilised for the benchmarking of osteogenic differentiation quality in 2D and 3D cultures. Metabolomics analysis was performed with the use of gas chromatography-mass spectrometry (GC-MS). A set of 11 metabolites was used to train an XGboost model which achieved excellent performance in distinguishing between differentiated and undifferentiated umbilical cord blood mesenchymal stem cells (UCB MSCs). The model was benchmarked against samples not present in the training set, being able to efficiently capture osteogenesis in 3D UCB MSC cultures with an area under the curve (AUC) of 82.6%. On the contrary, the model did not capture any differentiation in Wharton's Jelly MSC samples, which are well-known underperformers in osteogenic differentiation (AUC of 56.2%). Mineralisation was significantly correlated with the levels of fumarate, glycerol, and myo-inositol, the four metabolites found most important for model performance (R = 0.89, R = 0.94, and R = 0.96, and = 0.016, = 0.0059, and = 0.0022, respectively). In conclusion, our results indicate that metabolomics in combination with machine learning can be used for the development of reliable potency assays for the evaluation of Advanced Therapy Medicinal Products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680063PMC
http://dx.doi.org/10.3390/jfb15120367DOI Listing

Publication Analysis

Top Keywords

stem cell
16
machine learning
12
osteogenic differentiation
12
mesenchymal stem
8
stem cells
8
metabolomics combination
8
combination machine
8
stem
7
differentiation
5
metabolomics
4

Similar Publications

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.

Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.

View Article and Find Full Text PDF

The adventitia, the artery's most intricate layer, has received little attention.. During atherosclerosis, adventitia components undergo significant changes, such as angiogenesis, lymphangiogenesis, Artery Tertiary Lymphoid Organ (ATLO) formation, axon density increase, fibroblast activation, and stem cell differentiation.

View Article and Find Full Text PDF

Manipulation of WUSCHEL orthologue expression improves the forage yield and quality in Medicago.

Plant Biotechnol J

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.

View Article and Find Full Text PDF

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!