In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6. Notably, Spg103 exhibited distinct stability properties, with increased activity in the presence of Na+ and EDTA. Spg103 displays both lichenase and cellobiohydrolase activity. Despite possessing a GH5 cellulase domain, FN3 and CBM3 domains characteristic of cellulases and CBHs, biochemical assays showed that rSpg103 exhibited higher activity towards mixed β-1,3-1,4-glucan such as barley β-glucan and lichenan than towards beta-1,4-linkages. The endolytic activity of the enzyme was confirmed by TLC and UPLC-MS analyses, which identified cellotriose as the main hydrolysis product. In addition, Spg103 exhibited an exo-type activity, selectively releasing cellobiose units from cellooligosaccharides, which is characteristic of cellobiohydrolases. These results demonstrate the potential of Spg103 for a variety of biotechnological applications, particularly those requiring tailor-made enzymatic degradation of mixed-linked β-glucans. This study provides a basis for further structural and functional investigations of the bifunctional enzyme and highlights Spg103 as a promising candidate for industrial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679780 | PMC |
http://dx.doi.org/10.3390/md22120558 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!