Lateral flow assays are widely used in point-of-care diagnostics but face challenges in sensitivity and accuracy when detecting low analyte concentrations, such as thyroid-stimulating hormone biomarkers. This study aims to enhance assay performance by leveraging textural features and hybrid artificial intelligence models. A modified Gray-Level Co-occurrence Matrix, termed the Averaged Horizontal Multiple Offsets Gray-Level Co-occurrence Matrix, was utilised to compute the textural features of the biosensor assay images. Significant textural features were selected for further analysis. A deep learning Convolutional Neural Network model was employed to extract features from these textural features. Both traditional machine learning models and hybrid artificial intelligence models, which combine Convolutional Neural Network features with traditional algorithms, were used to categorise these textural features based on the thyroid-stimulating hormone concentration levels. The proposed method achieved accuracy levels exceeding 95%. This pioneering study highlights the utility of textural aspects of assay images for accurate predictive disease modelling, offering promising advancements in diagnostics and management within biomedical research.

Download full-text PDF

Source
http://dx.doi.org/10.3390/bios14120611DOI Listing

Publication Analysis

Top Keywords

textural features
24
assay images
12
lateral flow
8
features
8
thyroid-stimulating hormone
8
hybrid artificial
8
artificial intelligence
8
intelligence models
8
gray-level co-occurrence
8
co-occurrence matrix
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!