With the increasing number of space debris, the demand for telescopes to observe space debris is also constantly increasing. The telescope observation scheduling problem requires algorithms to schedule telescopes to maximize observation value within the visible time constraints of space debris, especially when dealing with large-scale problems. This paper proposes a practical heuristic algorithm to solve the telescope observation of space debris scheduling problem. In order to accelerate the solving speed of algorithms on large-scale problems, this paper combines the characteristics of the problem and partitions the large-scale problem into multiple sub-problems according to the observation time. In each sub-problem, a coding method based on the priority of the target going into the queue is proposed in combination with the actual observation data, and a decoding method matching the coding method is designed. In the solution process for each sub-problem, an adaptive variable neighborhood search is used to solve the space debris observation plan. When solving all sub-problems is completed, the observation plans obtained on all sub-problems are combined to obtain the observation plan of the original problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/biomimetics9120718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!