The Role of Bone-Derived Osteocalcin in Testicular Steroidogenesis: Contributing Factor to Male Fertility.

Diseases

Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.

Published: December 2024

Osteocalcin (OCN), a protein predominantly produced by osteoblasts in bone, has emerged as a significant factor in bone metabolism and reproductive function. This article reviews the latest research on the role of OCN beyond its traditional functions in bone mineralisation, particularly its influence on testicular steroidogenesis and male fertility. The structure and modifications of OCN are elaborated upon, highlighting its uncarboxylated form (ucOCN), which is becoming increasingly recognised for its bioactive properties. The impact of OCN on bone quantity, quality and strength is summarised, emphasising its role as a regulator of bone metabolism. Furthermore, the influence of ucOCN on testicular steroidogenesis and the involvement of GPRC6A, a G protein-coupled receptor, in mediating these effects are also explored. Evidence suggests that ucOCN regulates testosterone synthesis and spermatogenesis, which indirectly have the potential to influence bone metabolism integrity. In conclusion, OCN, particularly in its uncarboxylated form, plays a crucial role in bone metabolism and male fertility by regulating testicular steroidogenesis, with GPRC6A mediating these effects, thereby linking bone health and reproductive functions.

Download full-text PDF

Source
http://dx.doi.org/10.3390/diseases12120335DOI Listing

Publication Analysis

Top Keywords

testicular steroidogenesis
16
bone metabolism
16
male fertility
12
bone
8
uncarboxylated form
8
mediating effects
8
ocn
5
role
4
role bone-derived
4
bone-derived osteocalcin
4

Similar Publications

The Role of Bone-Derived Osteocalcin in Testicular Steroidogenesis: Contributing Factor to Male Fertility.

Diseases

December 2024

Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.

Osteocalcin (OCN), a protein predominantly produced by osteoblasts in bone, has emerged as a significant factor in bone metabolism and reproductive function. This article reviews the latest research on the role of OCN beyond its traditional functions in bone mineralisation, particularly its influence on testicular steroidogenesis and male fertility. The structure and modifications of OCN are elaborated upon, highlighting its uncarboxylated form (ucOCN), which is becoming increasingly recognised for its bioactive properties.

View Article and Find Full Text PDF

Diabetes can affect male fertility via oxidative stress and endocrine system disruption. Nanomedicine based on natural products is employed to address diabetes complications. The current study aims to investigate the potential beneficial effect of propolis extract nanoparticles against diabetes-induced testicular damage in male rats.

View Article and Find Full Text PDF

Atrazine is an herbicide widely used on plantations worldwide. Experimental studies suggest that the herbicide impairs male reproductive function in mammals. This systematic review and meta-analysis aimed to evaluate the impact of atrazine exposure on the levels of hormones from the hypothalamic-pituitary-testicular axis using murine as the animal model.

View Article and Find Full Text PDF

Exploring the interplay between inflammation and male fertility.

FEBS J

December 2024

UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal.

Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility.

View Article and Find Full Text PDF

The population responds to environmental variability largely determined by the dynamic interactions between fitness components within- and among-individual variation in the expression of the environmentally sensitive phenotype. The study was conducted on daily and seasonal changes in the expression of steroidogenic gene markers and corresponding seasonal changes in the physiological characters in adult male tree sparrows. Two experiments were performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!