α-Proteobacteria have been repeatedly isolated from marine sponges and proposed to be beneficial to the host. Bacterial motility is known to contribute to host colonization. We have previously identified pseudovibriamides A and B, produced in culture by Ab134, and shown that pseudovibriamide A promotes flagellar motility. Pseudovibriamides are encoded in a hybrid nonribosomal peptide synthetase-polyketide synthase gene cluster that also includes several accessory genes. Pseudovibriamide A is a linear heptapeptide and pseudovibriamide B is a nonadepsipeptide derived from pseudovibriamide A. Here, we define the borders of the pseudovibriamides gene cluster, assign function to biosynthetic genes using reverse genetics, and test the hypothesis that pseudovibriamides impact motility by modulating gene transcription. RNA-sequencing transcriptomic analyses of strains having different compositions of pseudovibriamides suggested that both pseudovibriamides A and B affect genes potentially involved in motility, and that a compensatory mechanism is at play in mutants that produce only pseudovibriamide A, resulting in comparable flagellar motility as the wild type. The data gathered suggest that pseudovibriamides A and B have opposite roles in modulating a subset of genes, with pseudovibriamide B having a primary effect in gene activation, and pseudovibriamide A on inhibition. Finally, we observed many differentially expressed genes (up to 29% of the total gene number) indicating that pseudovibriamides have a global effect on transcription that goes beyond motility.IMPORTANCEMarine sponges are found throughout the oceans from tropical coral reefs to polar sea floors, playing crucial roles in marine ecosystems. bacteria have been proposed to contribute to sponge health. We have previously shown that pseudovibriamides produced by promote bacterial motility, a behavior that is beneficial to bacterial survival and host colonization. The gene cluster that encodes pseudovibriamide biosynthesis is found in two-thirds of genomes. This gene cluster is also present in bacteria that interact with terrestrial plants and animals. Here, we first assign functions to pseudovibriamide biosynthetic genes using reverse genetics. We then show that pseudovibriamides play a major role in transcriptional regulation, affecting up to 29% of genes, including motility genes. Thus, this work gives insights into pseudovibriamide biosynthesis and provides evidence that they are signaling molecules relevant to bacterial motility and to other yet-to-be-identified phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1128/mbio.03115-24DOI Listing

Publication Analysis

Top Keywords

gene cluster
16
flagellar motility
12
bacterial motility
12
pseudovibriamides
11
pseudovibriamide
10
motility
9
host colonization
8
pseudovibriamides produced
8
genes
8
genes pseudovibriamide
8

Similar Publications

Genomic investigation of plant secondary metabolism: insights from synteny network analysis of oxidosqualene cyclase flanking genes.

New Phytol

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.

The clustered distribution of genes involved in metabolic pathways within the plant genome has garnered significant attention from researchers. By comparing and analyzing changes in the flanking regions of metabolic genes across a diverse array of species, we can enhance our understanding of the formation and distribution of biosynthetic gene clusters (BGCs). In this study, we have designed a workflow that uncovers and assesses conserved positional relationships between genes in various species by using synteny neighborhood networks (SNN).

View Article and Find Full Text PDF

Hoxa5 plays numerous roles in development, but its downstream molecular effects are mostly unknown. We applied bulk RNA-seq assays to characterize the transcriptional impact of the loss of Hoxa5 gene function in seven different biological contexts, including developing respiratory and musculoskeletal tissues that present phenotypes in Hoxa5 mouse mutants. This global analysis revealed few common transcriptional changes, suggesting that HOXA5 acts mainly via the regulation of context-specific effectors.

View Article and Find Full Text PDF

Background: RNA N6-methyladenosine (m6A) regulators are essential for numerous biological processes and are implicated in various diseases. However, the comprehensive role of m6A regulators in the context of liver transplantation (LT) remains poorly understood. This study aimed to illustrate the relationship between m6A regulators and ischemia-reperfusion injury (IRI) following LT.

View Article and Find Full Text PDF

Cognitive decline and neuroinflammation in a mouse model of obesity: An accelerating role of ageing.

Brain Behav Immun

December 2024

Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany. Electronic address:

Obesity, a pandemic, worldwide afflicts almost one billion people. Obesity and ageing share several pathological pathways leading to neurological disorders. However, due to a lack of suitable animal models, the long-term effects of obesity on age-related disorders- cognitive impairment and dementia have not yet been thoroughly investigated.

View Article and Find Full Text PDF

Contributions to the () Group in China: Taxonomy, Species Diversity, and Molecular Phylogeny.

J Fungi (Basel)

December 2024

Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.

is the largest genus in the family , with approximately 1000 species worldwide. Basic data on the species diversity, geographic distribution, and the infrageneric framework of are still incomplete because of the intricate nature of this genus, which includes numerous unrecognized taxa that exist around the world. A multigene phylogeny of the group, initially designated as the " subgroup", was conducted using the ITS-28S- nucleotide datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!