Expression of the compact mitochondrial genome is regulated by nuclear encoded, mitochondrially localized RNA-binding proteins (RBPs). RBPs regulate the lifecycles of mitochondrial RNAs from transcription to degradation by mediating RNA processing, maturation, stability and translation. The Fas-activated serine/threonine kinase (FASTK) family of RBPs has been shown to regulate and fine-tune discrete aspects of mitochondrial gene expression. Although the roles of specific targets of FASTK proteins have been elucidated, the molecular mechanisms of FASTK proteins in mitochondrial RNA metabolism remain unclear. Therefore, we resolved the structure of FASTKD4 at atomic level that includes the RAP domain and the two FAST motifs, creating a positively charged cavity resembling that of the very short patch repair endonuclease. Our biochemical studies show that FASTKD4 binds the canonical poly(A) tail of MT-ND3 enabling its maturation and translation. The in vitro role of FASTKD4 is consistent with its loss in cells that results in decreased MT-ND3 polyadenylation, which destabilizes this messenger RNA in mitochondria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/nar/gkae1261 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Electronic address:
Conformational switching in RNA binding proteins (RBPs) are crucial for regulation of RNA processing and transport. Dysregulation or mutations in RBPs and broad RNA processing abnormalities are related to many human diseases including neurodegenerative disorders. Here, we review the role of protein-RNA conformational switches in RBP-RNA complexes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland.
Small nucleolar RNAs (snoRNAs) are non-coding RNAs (ncRNAs) that regulate many cellular processes. Changes in the profiles of cellular ncRNAs and those secreted in exosomes are observed during viral infection. In our study, we analysed differences in expression profiles of snoRNAs isolated from exosomes of influenza (IAV)-infected and non-infected MDCK cells using high-throughput sequencing.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Dysregulation of RNA processing has in recent years emerged as a significant contributor to neurodegeneration. The diverse mechanisms and molecular functions underlying RNA processing underscore the essential role of RNA regulation in maintaining neuronal health and function. RNA molecules are bound by RNA-binding proteins (RBPs), and interactions between RNAs and RBPs are commonly affected in neurodegeneration.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!