Background: Application of the nanomaterials to preparing X-ray shields and successfully treating multiresistant microorganisms has attracted great attention in modern life.

Objective: This study aimed to prepare flexible silicone-based matrices containing BiO, PbO, or BiO/PbO nanoparticles and select a cost-effective, cytocompatible, and antibacterial/antifungal X-ray shield in clinical radiography.

Material And Methods: In this experimental study, we prepared the nanoparticles by the modified biosynthesis method and fabricated the X-ray shields containing 20 wt% of the nanoparticles. The X-ray attenuation percentage and Half Value Layer (HVL) of the shields were investigated for the photon energies in the range of 40-100 kVp in clinical radiography. The antibacterial/antifungal activities of the shields were evaluated using a colony count method for the gram-negative (), and gram-positive () bacteria, and Candida albicans fungus. The shield toxicity was investigated on A549 cells.

Results: The highest X-ray attenuation percentage and the lowest HVL were obtained using the shield containing BiO nanoparticles. Although all shields displayed antimicrobial activity, the shield containing BiO/PbO nanoparticles showed the most effective reduction in the colony counts. Both X-ray shields containing nano BiO and BiO/PbO demonstrated high cytocompatibility on A549 cells at a concentration as high as 500 µg/ml. The shield with PbO nanoparticles was also cytocompatible at a concentration of 50 µg/ml.

Conclusion: The best X-ray attenuation performance is attributed to the silicone-based matrix with nano BiO; however, the flexible shield with BiO/PbO nanoparticles can be cost-effective and cytocompatible with the best antibacterial/antifungal properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668928PMC
http://dx.doi.org/10.31661/jbpe.v0i0.2403-1736DOI Listing

Publication Analysis

Top Keywords

x-ray attenuation
16
bio/pbo nanoparticles
16
x-ray shields
12
attenuation performance
8
silicone-based matrices
8
matrices bio
8
bio pbo
8
pbo bio/pbo
8
nanoparticles
8
cost-effective cytocompatible
8

Similar Publications

Assessment of Emphysema on X-ray Equivalent Dose Photon-Counting Detector CT: Evaluation of Visual Scoring and Automated Quantification Algorithms.

Invest Radiol

October 2024

From the Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, Zurich, Switzerland (B.K., F.E., J.K., T.F., L.J.); Advanced Radiology Center, Department of Diagnostic Imaging and Oncological Radiotherapy, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy (C.S., A.R.L.); and Section of Radiology, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy (A.R.L.).

Objectives: The aim of this study was to evaluate the feasibility and efficacy of visual scoring, low-attenuation volume (LAV), and deep learning methods for estimating emphysema extent in x-ray dose photon-counting detector computed tomography (PCD-CT), aiming to explore future dose reduction potentials.

Methods: One hundred one prospectively enrolled patients underwent noncontrast low- and chest x-ray dose CT scans in the same study using PCD-CT. Overall image quality, sharpness, and noise, as well as visual emphysema pattern (no, trace, mild, moderate, confluent, and advanced destructive emphysema; as defined by the Fleischner Society), were independently assessed by 2 experienced radiologists for low- and x-ray dose images, followed by an expert consensus read.

View Article and Find Full Text PDF

Simulated low-dose dark-field radiography for detection of COVID-19 pneumonia.

PLoS One

December 2024

Chair of Biomedical Physics, Department of Physics & School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.

Background: Dark-field radiography has been proven to be a promising tool for the assessment of various lung diseases.

Purpose: To evaluate the potential of dose reduction in dark-field chest radiography for the detection of the Coronavirus SARS-CoV-2 (COVID-19) pneumonia.

Materials And Methods: Patients aged at least 18 years with a medically indicated chest computed tomography scan (CT scan) were screened for participation in a prospective study between October 2018 and December 2020.

View Article and Find Full Text PDF

Spectral CT-based nomogram for evaluation of neoadjuvant chemotherapy response in esophageal squamous cell carcinoma.

Eur Radiol

December 2024

Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.

Objectives: To establish a spectral CT-based nomogram for predicting the response to neoadjuvant chemotherapy (NAC) in patients with locally advanced esophageal squamous cell carcinoma (ESCC).

Methods: This retrospective study included 172 patients with ESCC who underwent spectral CT scans before NAC followed by resection. Based on postoperative tumor regression grades (TRG), 34% (58) of patients were responsive (TRG1) and 66% (114) were non-responsive (TRG2-3).

View Article and Find Full Text PDF

Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases.

View Article and Find Full Text PDF

Background: Application of the nanomaterials to preparing X-ray shields and successfully treating multiresistant microorganisms has attracted great attention in modern life.

Objective: This study aimed to prepare flexible silicone-based matrices containing BiO, PbO, or BiO/PbO nanoparticles and select a cost-effective, cytocompatible, and antibacterial/antifungal X-ray shield in clinical radiography.

Material And Methods: In this experimental study, we prepared the nanoparticles by the modified biosynthesis method and fabricated the X-ray shields containing 20 wt% of the nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!