Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the chromatin organization field, with a special focus on chromatin motor complexes cohesin and condensin. Containing the highly conserved SMC proteins, these complexes are responsible for organizing chromatin during cell division. Additionally, research has demonstrated that condensin and cohesin also have important functions during interphase to shape the organization of chromatin and regulate expression of genes. Using the model organism , the authors review the current knowledge of how these complexes perform such diverse roles and what open questions still exist in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671135 | PMC |
http://dx.doi.org/10.3390/dna4010005 | DOI Listing |
DNA (Basel)
March 2024
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA.
Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the chromatin organization field, with a special focus on chromatin motor complexes cohesin and condensin.
View Article and Find Full Text PDFCurr Opin Genet Dev
December 2024
Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664 Laboratoire Dynamique du Noyau, CNRS UMR168 Laboratoire Physique des Cellules et Cancer, 75005 Paris, France. Electronic address:
The physical organization and properties of chromatin within the interphase nucleus are intimately linked to a wide range of functional DNA-based processes. In this context, interphase chromatin mechanics - that is, how chromatin, physically, responds to forces - is gaining increasing attention. Recent methodological advances for probing the force-response of chromatin in cellulo open new avenues for research, as well as new questions.
View Article and Find Full Text PDFUnlabelled: Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic neurons that give rise to mature serotonin (5-HT) neurons; over two hundred pathogenic heterozygous mutations have been discovered in human yet their impact on brain development has not been investigated. Here, we developed mouse models with different DNA-binding missense mutations.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991 Russia.
The functions of actin and its motor proteins myosins in the cytoplasm have been the subject of research for more than 100 years, but the existence and function of these proteins in the nucleus has been a matter of debate until recently. Recent data has clarified the role of actin and myosin molecules in controlling the dynamics of processes in the cell nucleus, chromatin organization and genome integrity. New microscopy techniques and the use of modified actin-binding probes have made it possible for the first time to directly visualize the polymerization of actin filaments in the nucleus of living cells.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
The formation of biomolecular condensates in vitro and in vivo has become an increasingly important subject of studies. One particular area of interest is the phase separation of chromatin in the nucleus. However, the interplay of condensed chromatin and chromatin-binding enzymes has barely been studied as of now.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!