Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities. We found that evolution in response to management increased invasiveness compared to populations evolved without management. This evolution in response to management had little effect on the impact of the invader on the resident species. These results illustrate the potential eco-evolutionary consequences of management practices. Mitigating evolution to physical removal, in addition to pesticides, may be important to the long-term success of integrated pest management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671222PMC
http://dx.doi.org/10.1111/eva.70060DOI Listing

Publication Analysis

Top Keywords

evolution response
12
response management
12
management
9
populations duckweed
8
management practices
8
evolution
5
populations
5
management increases
4
increases invasiveness
4
invasiveness experimental
4

Similar Publications

Background: 3D technologies [Virtual and Augmented 3D planning, 3D printing (3DP), Additive Manufacturing (AM)] are rapidly being adopted in the healthcare sector, demonstrating their relevance in personalized medicine and the rapid development of medical devices. The study's purpose was to understand the state and evolution of 3DP/AM technologies at the Point-of-Care (PoC), its adoption, organization and process in Spanish hospitals and to understand and compare the evolution of the models, clinical applications, and challenges in utilizing the technology during the COVID-19 pandemic and beyond.

Methods: This was a questionnaire-based qualitative and longitudinal study.

View Article and Find Full Text PDF

CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.

View Article and Find Full Text PDF

As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host's immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time.

View Article and Find Full Text PDF

This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake , focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve.

View Article and Find Full Text PDF

The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!