Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

Published: January 2025

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive. Here, we use solid-state NMR spectroscopy to investigate the side chain structure, dynamics, and interactions of five polar residues at the N-terminal entrance of the channel and three polar residues at the C-terminal end. The chemical shifts of the N-terminal Glu8 reveal that the Glu side chain interacts with protons, Ca and two neighboring Thr residues, and adopts distinct motionally averaged conformational ensembles. These polar interactions are sensitive to the presence of negatively charged lipids in the membrane. A T9I mutation, prevalent in the Omicron variants of SARS-CoV-2 E, perturbs these interactions and partially immobilizes the N-terminal segment. Deeper into the channel, two polar residues, Asn15 and Ser16, form interhelical hydrogen bonds in the closed state but become separated by water molecules in the open state. This is manifested by Asn15-Ser16 correlation signals at neutral pH and the loss of these correlations and the appearance of water cross peaks with Ser16 at acidic pH in the presence of Ca. Finally, the guanidinium side chain of the C-terminal Arg38 undergoes fast reorientations in the closed state but becomes more restricted in the open state. These results provide evidence for a dynamic and hydrogen-bonded N-terminal polar network that recruits and relays protons and Ca in a lipid-dependent manner. Once inside, the ions permeate past the hydrophobic middle of the transmembrane domain with the help of enhanced hydrophilicity of the C-terminal channel lumen due to the insertion of the Arg38 side chain into the pore.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c13229DOI Listing

Publication Analysis

Top Keywords

side chain
16
closed state
12
open state
12
polar residues
12
ion conduction
8
transmembrane domain
8
polar
6
state
6
polar networks
4
networks mediate
4

Similar Publications

Flavonoids and Kavalactones Isolated from Seeds of Alpinia katsumadai Hayata. and Their Cytotoxic Activities.

Chem Biodivers

January 2025

Guizhou Medical University, School of Pharmaceutical Sciences, University Town, Gui'an New District, 550025, Guiyang, CHINA.

An unrevealed dihydroflavone-monoterpene conjugate (1), two unrevealed kavalactones (2-3, including one with an uncommon side chain), and thirteen previously identified compounds (4-16) were extracted from Alpinia katsumadai Hayata. seeds. The two-dimension structures of the new compounds were authenticated utilizing HRESIMS as well as NMR spectral analysis, while their absolute chiral configurations were ascertained either by correlating the experimental and simulated values of electronic circular dichroism (ECD) patterns or conducting X-ray diffraction experiments.

View Article and Find Full Text PDF

The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt.

View Article and Find Full Text PDF

Organic molecular design for high-power density sodium-ion batteries.

Chem Commun (Camb)

January 2025

Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany.

Organic materials, with abundant resources, low cost, high flexibility, tunable structures, lightweight nature, and wide operating temperature range, are regarded as promising candidates for sodium-ion batteries (SIBs). Unfortunately, their poor electronic and ionic conductivity remain significant challenges, hindering the achievement of high power density for sodium storage. Power density, a critical factor in battery performance evaluation, is essential for assessing fast charging capabilities.

View Article and Find Full Text PDF

Structural characterization of polysaccharides from Polygonatum Sibiricum and effect on alleviating hyperlipidemia in egg yolk emulsion-induced mice.

Int J Biol Macromol

January 2025

Department of Endocrinology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China. Electronic address:

Polysaccharides are the major bioactive composition of Polygonatum sibiricum (P. sibiricum). However, the structural and functional identifications of these polysaccharides were still limited.

View Article and Find Full Text PDF

Reductive stress: The key pathway in metabolic disorders induced by overnutrition.

J Adv Res

January 2025

The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!