Rationale: Data are required for SIFT-MS analysis of perfluoroalkyl and polyfluoroalkyl substances (PFAS), which are persistent in the environment and cause adverse health effects. Specifically, the rate coefficients and product ion branching ratios of the reactions of HO, NO, O •, O•, OH, O •, NO and NO with PFAS vapours are needed.

Methods: The dual polarity SIFT-MS instrument (Voice200) was used to generate these eight reagent ions and inject them into the flow tube with N carrier gas at a temperature of 393 K. Vapours of pentafluoropropionic acid, heptafluorobutyric acid, nonafluoro-1-hexanol, perfluoro-2-methyl-2-pentene, perfluorohexanoic acid, perfluoro(2-methyl-3-oxahexanoic) acid, tridecafluoro-1-octanol and nonafluorobutane-1-sulfonic acid were introduced in dry and humid air. Full-scan mass spectra were collected for all reagents at variable PFAS concentrations and analysed numerically.

Results: Rate coefficients were determined for 64 reactions, for which 55 positive and 71 negative product ions were identified. The branching ratios for the primary reaction channels were extracted from the data, and the secondary chemistry with HO molecules was qualitatively assessed. The thermochemical data were calculated for the HO reactions using density functional theory (DFT).

Conclusions: An important observation is that secondary reactions with water molecules remove the positive product ions, making them unsuitable for practical SIFT-MS analysis of PFAS vapours. In contrast, most negative reaction product ions are not significantly affected by humidity and are thus preferred for the SIFT-MS analyses of PFAS substances in various gaseous matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.9975DOI Listing

Publication Analysis

Top Keywords

product ions
12
reactions positive
8
positive negative
8
dry humid
8
sift-ms analysis
8
rate coefficients
8
branching ratios
8
pfas vapours
8
pfas
6
reactions
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!