The intrinsic temperature dependence of Raman-active modes in carbon nanotubes (CNTs), particularly the radial breathing mode (RBM), has been a topic of a long-standing controversy. In this study, we prepared suspended individual CNTs to investigate how their Raman spectra depend on temperature and to understand the effects of environmental conditions on this dependency. We analyzed the intrinsic temperature dependence of the main Raman-active modes, including the RBM, the moiré-activated R feature, and the G-band in double-walled carbon nanotubes (DWCNT) and single-walled carbon nanotubes (SWCNTs) after complete desorption of air. The inner tube of the DWCNT, like the desorbed SWCNTs, was free from environmental influences, resulting in minimal temperature-induced RBM frequency shifts. We show that the larger RBM shift of SWCNTs upon initial heating is not intrinsic but is due to air desorption. The R feature, attributed to moiré-activated phonon scattering and nondispersive in nature, demonstrated a quasi-linear temperature dependence, akin to the G-band but with a lower temperature coefficient. The G-band, which was largely unaffected by environmental conditions, exhibited a consistent temperature coefficient across SWCNTs, DWCNTs, and small SWCNT bundles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c14078 | DOI Listing |
Inorg Chem
December 2024
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
The interplay between quantum effects from magnetic frustration, low-dimensionality, spin-orbit coupling, and crystal electric field in rare-earth materials leads to nontrivial ground states with unusual magnetic excitations. Here, we investigate YbTaO, which hosts a buckled square net of Yb ions with = 1/2 moments. The observed Curie-Weiss temperature is about -1 K, implying an antiferromagnetic coupling between the Yb moments.
View Article and Find Full Text PDFACS Synth Biol
December 2024
Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.
Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).
View Article and Find Full Text PDFProteomes
November 2024
Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-865, Japan.
Sous vide, a cooking method that involves vacuum-sealed fish at low temperatures, yields a uniquely tender, easily flaked texture. Previous research on sous-vide tenderization has focused on thermal protein denaturation. On the other hand, the contribution of proteases, activated at low temperatures in fish meat, has been suggested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!