A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning-based metabolomics data study of prostate cancer. | LitMetric

Deep learning-based metabolomics data study of prostate cancer.

BMC Bioinformatics

College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.

Published: December 2024

As a heterogeneous disease, prostate cancer (PCa) exhibits diverse clinical and biological features, which pose significant challenges for early diagnosis and treatment. Metabolomics offers promising new approaches for early diagnosis, treatment, and prognosis of PCa. However, metabolomics data are characterized by high dimensionality, noise, variability, and small sample sizes, presenting substantial challenges for classification. Despite the wide range of applications of deep learning methods, the use of deep learning in metabolomics research has not been extensively explored. In this study, we propose a hybrid model, TransConvNet, which combines transformer and convolutional neural networks for the classification of prostate cancer metabolomics data. We introduce a 1D convolution layer for the inputs to the dot-product attention mechanism, enabling the interaction of both local and global information. Additionally, a gating mechanism is incorporated to dynamically adjust the attention weights. The features extracted by multi-head attention are further refined through 1D convolution, and a residual network is introduced to alleviate the gradient vanishing problem in the convolutional layers. We conducted comparative experiments with seven other machine learning algorithms. Through five-fold cross-validation, TransConvNet achieved an accuracy of 81.03% and an AUC of 0.89, significantly outperforming the other algorithms. Additionally, we validated TransConvNet's generalization ability through experiments on the lung cancer dataset, with the results demonstrating its robustness and adaptability to different metabolomics datasets. We also proposed the MI-RF (Mutual Information-based random forest) model, which effectively identified key biomarkers associated with prostate cancer by leveraging comprehensive feature weight coefficients. In contrast, traditional methods identified only a limited number of biomarkers. In summary, these results highlight the potential of TransConvNet and MI-RF in both classification tasks and biomarker discovery, providing valuable insights for the clinical application of prostate cancer diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12859-024-06016-wDOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
metabolomics data
12
early diagnosis
8
diagnosis treatment
8
deep learning
8
metabolomics
6
cancer
6
prostate
5
deep learning-based
4
learning-based metabolomics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!