A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of missing data imputation methods on univariate blood pressure time series data analysis and forecasting with ARIMA and LSTM. | LitMetric

Effects of missing data imputation methods on univariate blood pressure time series data analysis and forecasting with ARIMA and LSTM.

BMC Med Res Methodol

School of Mathematical & Statistical Sciences, University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX, 78520, USA.

Published: December 2024

Background: Missing observations within the univariate time series are common in real-life and cause analytical problems in the flow of the analysis. Imputation of missing values is an inevitable step in every incomplete univariate time series. Most of the existing studies focus on comparing the distributions of imputed data. There is a gap of knowledge on how different imputation methods for univariate time series affect the forecasting performance of time series models. We evaluated the prediction performance of autoregressive integrated moving average (ARIMA) and long short-term memory (LSTM) network models on imputed time series data using ten different imputation techniques.

Methods: Missing values were generated under missing completely at random (MCAR) mechanism at 10%, 15%, 25%, and 35% rates of missingness using complete data of 24-h ambulatory diastolic blood pressure readings. The performance of the mean, Kalman filtering, linear, spline, and Stineman interpolations, exponentially weighted moving average (EWMA), simple moving average (SMA), k-nearest neighborhood (KNN), and last-observation-carried-forward (LOCF) imputation techniques on the time series structure and the prediction performance of the LSTM and ARIMA models were compared on imputed and original data.

Results: All imputation techniques either increased or decreased the data autocorrelation and with this affected the forecasting performance of the ARIMA and LSTM algorithms. The best imputation technique did not guarantee better predictions obtained on the imputed data. The mean imputation, LOCF, KNN, Stineman, and cubic spline interpolations methods performed better for a small rate of missingness. Interpolation with EWMA and Kalman filtering yielded consistent performances across all scenarios of missingness. Disregarding the imputation methods, the LSTM resulted with a slightly better predictive accuracy among the best performing ARIMA and LSTM models; otherwise, the results varied. In our small sample, ARIMA tended to perform better on data with higher autocorrelation.

Conclusions: We recommend to the researchers that they consider Kalman smoothing techniques, interpolation techniques (linear, spline, and Stineman), moving average techniques (SMA and EWMA) for imputing univariate time series data as they perform well on both data distribution and forecasting with ARIMA and LSTM models. The LSTM slightly outperforms ARIMA models, however, for small samples, ARIMA is simpler and faster to execute.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12874-024-02448-3DOI Listing

Publication Analysis

Top Keywords

time series
32
arima lstm
16
univariate time
16
moving average
16
imputation methods
12
series data
12
data
10
imputation
9
arima
9
data imputation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!