Motor competence is related to a large number of correlates of different natures, forming together a system with flexible parts that are synergically and cooperatively connected to produce a wide range of motor outcomes that cannot be explained from a predetermined linear view or a unique mechanism. The diversity of interacting correlates, the various connections between them, and the fast changes between assessments at different time points are clear barriers to the study of motor competence. In this manuscript, we present a multilayer framework that accounts for the theoretical background and the potential mathematical procedures necessary to represent the non-linear, complex, and dynamic relationships between several underlying correlates that emerge as a motor competence network. Exploring motor competence from a new perspective that could be operationalized through multilayer networks seems promising, and allows more accurate inspection and representation of its topology and dynamics. This new perspective might also improve the understanding of motor competence structure and functionality over the developmental course. The use of the proposed approach could open up new horizons for the broad literature comprising motor competence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40279-024-02164-4 | DOI Listing |
Mol Neurodegener
January 2025
Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.
Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.
Sports Med Open
January 2025
Department of Health Promotion, Faculty of Medical and Health Sciences, School of Public Health, Tel-Aviv University, Tel-Aviv, Israel.
Background: Studies on rest durations during high-intensity interval training (HIIT) often compare fixed and self-selected (SS) rest allocation approaches. Frequently, the rest duration under SS conditions is unlimited, leading to inconsistent total rest durations compared to fixed rest conditions. To address this limitation, we recently compared fixed and SS rest conditions during cycling HIIT sessions, while keeping the total rest duration equivalent.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Santa Maria Di Costantinopoli 16, 80138, Naples, Italy.
Patients with Mild Cognitive Impairment (MCI) may exhibit poorer performance in visuomotor tasks than healthy individuals, particularly under conditions with high cognitive load. Few studies have examined reaching movements in MCI and did so without assessing susceptibility to distractor interference. This proof-of-concept study analyzed the kinematics of visually guided reaching movements towards a target dot placed along the participants' midsagittal/reaching axis.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Psychology, Lomonosov Moscow State University, Moscow, Russia.
Increased screen time (ST) among preschool children is becoming a matter of concern globally. Although gadgets such as phones, tablets and computers might be of educational use in this population, excessive ST might impair cognitive function among preschoolers. As data on this topic in preschool children are scarce, this study sought to investigate the relationship between ST and executive functions (EFs) in this population.
View Article and Find Full Text PDFJ Affect Disord
January 2025
School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany.
Aim: This study investigates the effects of transcranial direct current stimulation (tDCS) on brain network connectivity in individuals with obsessive-compulsive disorder (OCD).
Methods: In a randomized, double-blind, sham-controlled experimental design anodal tDCS (vs. sham) was applied in a total of 43 right-handed patients with OCD, targeting the right pre-supplementary motor area (pre-SMA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!