A Multilayer Network Model for Motor Competence from the View of the Science of Complexity.

Sports Med

Research Centre in Physical Activity, Health and Leisure, and Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.

Published: December 2024

Motor competence is related to a large number of correlates of different natures, forming together a system with flexible parts that are synergically and cooperatively connected to produce a wide range of motor outcomes that cannot be explained from a predetermined linear view or a unique mechanism. The diversity of interacting correlates, the various connections between them, and the fast changes between assessments at different time points are clear barriers to the study of motor competence. In this manuscript, we present a multilayer framework that accounts for the theoretical background and the potential mathematical procedures necessary to represent the non-linear, complex, and dynamic relationships between several underlying correlates that emerge as a motor competence network. Exploring motor competence from a new perspective that could be operationalized through multilayer networks seems promising, and allows more accurate inspection and representation of its topology and dynamics. This new perspective might also improve the understanding of motor competence structure and functionality over the developmental course. The use of the proposed approach could open up new horizons for the broad literature comprising motor competence.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40279-024-02164-4DOI Listing

Publication Analysis

Top Keywords

motor competence
28
motor
8
competence
7
multilayer network
4
network model
4
model motor
4
competence view
4
view science
4
science complexity
4
complexity motor
4

Similar Publications

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Background: Studies on rest durations during high-intensity interval training (HIIT) often compare fixed and self-selected (SS) rest allocation approaches. Frequently, the rest duration under SS conditions is unlimited, leading to inconsistent total rest durations compared to fixed rest conditions. To address this limitation, we recently compared fixed and SS rest conditions during cycling HIIT sessions, while keeping the total rest duration equivalent.

View Article and Find Full Text PDF

Patients with Mild Cognitive Impairment (MCI) may exhibit poorer performance in visuomotor tasks than healthy individuals, particularly under conditions with high cognitive load. Few studies have examined reaching movements in MCI and did so without assessing susceptibility to distractor interference. This proof-of-concept study analyzed the kinematics of visually guided reaching movements towards a target dot placed along the participants' midsagittal/reaching axis.

View Article and Find Full Text PDF

Increased screen time (ST) among preschool children is becoming a matter of concern globally. Although gadgets such as phones, tablets and computers might be of educational use in this population, excessive ST might impair cognitive function among preschoolers. As data on this topic in preschool children are scarce, this study sought to investigate the relationship between ST and executive functions (EFs) in this population.

View Article and Find Full Text PDF

Local effective connectivity changes after transcranial direct current stimulation in obsessive-compulsive disorder patients.

J Affect Disord

January 2025

School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany.

Aim: This study investigates the effects of transcranial direct current stimulation (tDCS) on brain network connectivity in individuals with obsessive-compulsive disorder (OCD).

Methods: In a randomized, double-blind, sham-controlled experimental design anodal tDCS (vs. sham) was applied in a total of 43 right-handed patients with OCD, targeting the right pre-supplementary motor area (pre-SMA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!