While olfactory behaviors are influenced by neuromodulatory signals, the underlying mechanism remains unknown. The olfactory tubercle (OT), a component of the olfactory cortex and ventral striatum, consists of anteromedial (am) and lateral (l) domains regulating odor-guided attractive and aversive behaviors, respectively, in which the amOT highly expresses various receptors for feeding-regulated neuromodulators. Here we show functions of appetite-stimulating orexin-1 receptor (OxR1) signaling in the amOT. When odor-food reward associated mice underwent OxR1 antagonist injection in the amOT, their odor-attractive behavior was suppressed and odor-aversive behavior was conversely induced. Although odor-attractive mice showed activation of attraction-promoting dopamine receptor type 1-expressing D1 cells in the amOT, the antagonist injection increased activation of aversion-promoting D2 cells in the amOT and D1 cells in the lOT. The results highlight the amOT as the crucial structure integrating OxR1 signaling and odor information, thereby controlling metabolic status-dependent olfactory behavior through the cell type- and domain-specific activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s42003-024-07438-1 | DOI Listing |
Commun Biol
December 2024
Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan.
While olfactory behaviors are influenced by neuromodulatory signals, the underlying mechanism remains unknown. The olfactory tubercle (OT), a component of the olfactory cortex and ventral striatum, consists of anteromedial (am) and lateral (l) domains regulating odor-guided attractive and aversive behaviors, respectively, in which the amOT highly expresses various receptors for feeding-regulated neuromodulators. Here we show functions of appetite-stimulating orexin-1 receptor (OxR1) signaling in the amOT.
View Article and Find Full Text PDFSci Rep
October 2024
Institute of Anatomy, Otto-von-Guericke-University, Leipziger Str. 44, 39120, Magdeburg, Germany.
Orexins are wake-promoting neuropeptides that originate from hypothalamic neurons projecting to widespread brain areas throughout the central nervous system. They modulate various physiological functions via their orexin 1 (OXR1) and 2 (OXR2) receptors, including sleep-wake rhythm but also cognitive functions such as memory formation. Here, we provide a detailed analysis of OXR1 and OXR2 mRNA expression profiles in the dorsal hippocampus as a key region for memory formation, using RNAscope multiplex in situ hybridization.
View Article and Find Full Text PDFJ Med Chem
November 2024
Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
The orexin 1 receptor (OX1R) has been suggested to be involved in the reward and autonomic nervous systems. Positron emission tomography (PET) of OX1R contributes to elucidating its role and developing new drugs. However, there are no useful PET probes for in vivo imaging of OX1R.
View Article and Find Full Text PDFDrugs
November 2024
Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy.
Orexins/hypocretins are neuropeptides produced by the hypothalamic neurons, binding two G-protein coupled receptors (orexin 1 and orexin 2 receptors) and playing a critical role in regulating arousal, wakefulness, and various physiological functions. Given the high prevalence of sleep disturbances in Alzheimer's disease (AD) and their reported involvement in AD pathophysiology, the orexin system is hypothesized to contribute to the disease pathogenesis. Specifically, recent evidence suggests that orexin's influence may extend beyond sleep regulation, potentially affecting amyloid-β and tau pathologies.
View Article and Find Full Text PDFBr J Pharmacol
November 2024
School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia.
The orexin (also known as hypocretin) system, consisting of neuropeptides orexin-A and orexin-B, was discovered over 25 years ago and was immediately identified as a central regulator of sleep and wakefulness. These peptides interact with two G-protein coupled receptors, orexin 1 (OX) and orexin 2 (OX) receptors which are capable of coupling to all heterotrimeric G-protein subfamilies, but primarily transduce increases in calcium signalling. Orexin neurons are regulated by a variety of transmitter systems and environmental stimuli that signal reward availability, including food and drug related cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!