Background: Urinary tract infections (UTIs) are prevalent bacterial infection, with uropathogenic Escherichia coli (UPEC) as the primary causative agent. The outer membrane of UPEC contains a lipopolysaccharide (LPS), which plays crucial roles in the host's immune response to infection. Neutrophils use neutrophil extracellular traps (NETs) are mechanism by which neutrophils defend against bacterial infections. However, the exact mechanism by which a bacterial LPS induces NET formation is not well understood. Therefore, the objective of this study is to identify the possible mechanism of LPS-mediated NETs and dissect the LPS domains of UPEC that predominantly modulate NET formation and NET-mediated killing.
Methods: To investigate the mechanism of bacterial LPS-induced NET formation, we constructed UPEC CFT073 mutants that had rfaD, rfaL and the wzzE deleted with individual LPS biosynthetic genes including the inner core synthase, O-antigen ligase and O-antigen polymerase, respectively. Subsequently, we evaluated the NET/reactive oxygen species (ROS)/IL-1β induction abilities and assessed the activation of toll-like receptor 4 (TLR4)/JNK signaling by CFT073 and its mutants.
Results: The results showed that the O-antigen of CFT073 LPS is essential for inducing NET formation through TLR4/JNK/NOX pathways. Inhibition of either pathway significantly decreased the production of ROS, induction of NETs, and secretion of IL-1β.
Conclusion: Our results demonstrate that CFT073 LPS is essential for inducing ROS-dependent NETs and IL-1β secretion from neutrophils. This study also provides evidence for the crucial roles of O-antigen in the immune response to UPEC infection, as well as its potential as a therapeutic target for the treatment of UTIs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmii.2024.12.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!