To enhance therapeutic strategies for cardiovascular diseases, the development of more reliable in vitro preclinical systems is imperative. These models, crucial for disease modeling and drug testing, must accurately replicate the 3D architecture of native heart tissue. In this study, we engineered a scaffold with aligned poly(lactic--glycolic acid) (PLGA) microfilaments to induce cellular alignment in the engineered cardiac microtissue (ECMT). Consequently, the coculture of three cell types, including cardiac progenitor cells (CPC), human umbilical cord endothelial cells (HUVEC), and human foreskin fibroblasts (HFF), within this 3D scaffold significantly improved cellular alignment compared to the control. Additionally, cells in the ECMT exhibited a more uniaxial anisotropic and oriented cytoskeleton, characterized by immunostaining of F-actin. This approach not only enhanced cell structure and microtissue architecture but also improved functionality, evident in synchronized electrophysiological signals. Therefore, our engineered cardiac microtissue using this aligned microfilament scaffold (AMFS) holds great potential for pharmaceutical research and other biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.4c01714DOI Listing

Publication Analysis

Top Keywords

engineered cardiac
12
cardiac microtissue
12
microtissue aligned
8
cellular alignment
8
functional structural
4
structural improvement
4
engineered
4
improvement engineered
4
cardiac
4
microtissue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!