A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrolysis of the acetyl-CoA allosteric activator by Staphylococcus aureus pyruvate carboxylase. | LitMetric

Hydrolysis of the acetyl-CoA allosteric activator by Staphylococcus aureus pyruvate carboxylase.

Arch Biochem Biophys

Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA. Electronic address:

Published: December 2024

Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to oxaloacetate which serves as an important anaplerotic reaction to replenish citric acid cycle intermediates. In most organisms, the PC-catalyzed reaction is allosterically activated by acetyl-coenzyme A. It has previously been reported that vertebrate PC can catalyze the hydrolysis of acetyl-CoA, offering a potential means for the enzyme to attenuate its allosteric activation. However, in the years since this initial report, there has been no further investigation of this phenomenon. The allosteric binding site for acetyl-CoA is now well characterized, enabling more detailed studies on acetyl-CoA hydrolysis at the allosteric site. Here, we confirm that slow acetyl-CoA hydrolysis is catalyzed by a bacterial PC from Staphylococcus aureus, indicating that this phenomenon is a broad feature of PC enzymes spanning the domains of life. Surprisingly, the enzyme can hydrolyze acetyl-CoA even when the binding site for the acetyl moiety is eliminated through truncation of the biotin carboxylase domain. This suggests that an alternative site for acetyl-CoA binding and hydrolysis may be present in the carboxyltransferase domain of S. aureus PC. We conclude that PC has evolved to minimize the rate of acetyl-CoA hydrolysis at the allosteric site and update the description of PC-catalyzed acetyl-CoA hydrolysis to suggest that this reaction is unlikely to play a significant physiological, metabolic or catalytic role.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2024.110280DOI Listing

Publication Analysis

Top Keywords

acetyl-coa hydrolysis
16
hydrolysis acetyl-coa
8
staphylococcus aureus
8
pyruvate carboxylase
8
acetyl-coa
8
binding site
8
site acetyl-coa
8
hydrolysis allosteric
8
allosteric site
8
acetyl-coa binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!