Enhanced uptake of perfluorooctanoic acid by polystyrene nanoparticles in Pacific oyster (Magallana gigas).

Comp Biochem Physiol C Toxicol Pharmacol

Edmonton, Alberta, Canada. Electronic address:

Published: December 2024

The effects of plastic pollution on marine organisms is of growing concern. The hydrophobic surface of plastics adsorbs organic contaminants and can alter the rate of chemical uptake in fishes. Per-fluorinated organic chemicals such as Perfluorooctanoic acid (PFOA) are highly hydrophobic toxic chemicals that adsorb to hydrophobic surfaces. We hypothesized that the presence of nano-sized plastic particles adsorbs PFOA and alter both the physical-chemical properties of the plastics and also enhance PFOA uptake into organisms. Using radiolabelled C-PFOA, we measured direct unidirectional uptake of PFOA in juvenile Pacific Oysters (Magallana gigas) at different (0.025, 0.50, and 0.100 mg/L) concentrations, for different exposure periods (1, 2, 4, and 6 h) and investigated whether varying concentrations (0.1, 0.5, 1 mg/L) of either 500 nm or 20 nm polystyrene nanoparticles (PS-NPs) differentially altered the uptake rate of PFOA. Our results demonstrate that PFOA adsorbs to the surface of PS-NPs, altering PS-NP behaviour in solution and significantly increases the rate of uptake of PFOA in exposed Pacific oysters. PFOA uptake at 0.1 mg/L was increased 2.3-fold in the presence of 1 mg/L 500 nm PS-NP and 3.2-fold in the presence of 1 mg/L 20 nm PS-NP. In a separate study to examine if PS NPs potentiate the biochemical response to PFOA, both 500 and 20 nm PS-NP at 100 mg/L increased the 1 mg/L PFOA-induced oxidative stress by 2.5-fold and 3-fold respectively. These findings demonstrate that nanoplastics as co-contaminants in marine systems are able to adsorb PFOA and significantly potentiate its uptake and toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2024.110119DOI Listing

Publication Analysis

Top Keywords

pfoa
10
perfluorooctanoic acid
8
polystyrene nanoparticles
8
magallana gigas
8
pfoa uptake
8
uptake pfoa
8
pacific oysters
8
1 mg/l 500 nm
8
presence 1 mg/l
8
20 nm ps-np
8

Similar Publications

Background: Few studies have investigated associations between per- and polyfluoroalkyl substances (PFAS) and childhood cancers. Detectable levels of PFAS in California water districts were reported in the Third Unregulated Contaminant Monitoring Rule for 2013-2015.

Methods: Geocoded residences at birth were linked to corresponding water district boundaries for 10,220 California-born children (aged 0-15 years) diagnosed with cancers (2000-2015) and 29,974 healthy controls.

View Article and Find Full Text PDF

Unveiling the Contribution of Hydrogen Radicals to Per- and Polyfluoroalkyl Substances (PFASs) Defluorination: Applicability and Degradation Mechanisms.

Environ Sci Technol

January 2025

Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.

At present, the defluorination of per- and polyfluoroalkyl substances (PFASs), including perfluoroether compounds as substitutes of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate, is limited by the effective active species produced during the oxidation-reduction process. The contribution of the hydrogen radical (•H) as a companion active substance in the photoreduction and electrocatalytic degradation of PFASs has been neglected. Herein, we demonstrate that perfluorocarboxylic acids and perfluoroether compounds such as PFOA and hexafluoropropylene oxide dimer acid (GenX) underwent near-complete photodegradation and effective defluorination by continuously generating •H through perfluoroalkyl radical activation of water under UV irradiation without any reagents and catalysts.

View Article and Find Full Text PDF

Background: The increased use of chemicals leads to a continuous deposition of chemicals in the environment and to a continuous increase in exposure of the global and the European population. Comprehensive burden of disease analyses are however still missing for many countries.

Methods: Using the World Health Organization's Environmental Burden of Disease (EBD) approach and combining data from the European Human Biomonitoring (HBM) dashboard with disease and population data, we estimated the comprehensive attributable burden (AB) for the year 2021, in the best-case quantified by disability-adjusted life years (DALY).

View Article and Find Full Text PDF

Background: Although evidence suggests that dental floss contains perfluoroalkyl and polyfluoroalkyl substances (PFASs), it is still uncertain whether the use of dental floss contributes to an increased risk of PFAS exposure.

Methods: We analysed data on serum PFAS concentrations and dental floss usage in a cohort of 6750 adults who participated in the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2020. In our study, we used logistic regression, a survey-weighted linear model, item response theory (IRT) scores, inverse probability weights (IPWs) and sensitivity analysis to assess the potential impact of dental floss usage on human serum PFAS levels.

View Article and Find Full Text PDF

Background: PFAS contamination is a global issue, affecting various food sources, especially animal-based products like eggs and dairy.

Objective: Collect scientific evidence of the presence of PFAS in diverse food and edible resources along with the related risks to human health, pursuing the following objectives: determination of the level of terrestrial food chain contamination; determination of the related human health risk.

Data Source: Scopus, PubMed, and Web of Science databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!