Background And Aims: The enteric nervous system (ENS), comprised of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation, yet while neuronal aspects have been extensively studied, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.
Methods: Full-thickness intestinal resection material from pediatric controls and HSCR patients was collected, dissociated and enriched for the ENS population through fluorescence-activated cell sorting. Single-cell RNA sequencing was performed to uncover the transcriptomic diversity of the ENS in HSCR patients and controls, as well as in wildtype and ret mutant zebrafish. Immunofluorescence and fluorescence in situ hybridization confirmed the presence of distinct subtypes.
Results: Two major enteric glial classes emerged in the pediatric intestine: Schwann-like enteric glia, reminiscent of Schwann cells, and Enteric glia, expressing classical glial markers. Comparative analysis with previously published datasets confirmed our classification and revealed that whilst classical enteric glia are predominant prenatally, Schwann-like enteric glia become more abundant postnatally. In HSCR, ganglionic segments mirrored controls, while aganglionic segments, only featured Schwann-like enteric glia. Leveraging the regenerative potential of Schwann cells, we explored therapeutic options using a ret mutant zebrafish. Prucalopride, a serotonin-receptor (5-HT) agonist, induced neurogenesis partially rescuing the HSCR phenotype in ret mutants.
Conclusion: Two major enteric glial classes were identified in the pediatric intestine, highlighting the significant postnatal contribution of Schwann-like enteric glia to glial heterogeneity. Crucially, these glial subtypes persist in aganglionic segments of HSCR patients, offering a new target for their treatment using 5-HT agonists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2024.12.011 | DOI Listing |
Gastroenterology
January 2025
Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Electronic address:
Gastroenterology
December 2024
Department of Clinical Genetics, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands. Electronic address:
Background And Aims: The enteric nervous system (ENS), comprised of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation, yet while neuronal aspects have been extensively studied, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.
View Article and Find Full Text PDFBrain
December 2024
School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
Convergent data, across species, paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function where it mediates the majority of neuronal inhibition.
View Article and Find Full Text PDFMucosal Immunol
December 2024
Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. Electronic address:
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention.
View Article and Find Full Text PDFBMC Womens Health
December 2024
Department of Basic Sciences - Physiology Division, Ponce Health Sciences University, Ponce Research Institute, PO Box 7004, Ponce, 00732-7004, PR, Puerto Rico.
Background: Endometriosis is a complex gynecological disorder characterized by the ectopic growth of endometrial tissue. Symptoms of endometriosis are known to impair the quality of life of patients, and among these are found dysmenorrhea, chronic pelvic pain, and gastrointestinal (GI) issues. GI issues such as painful bowel movements, bloating and constipation or diarrhea, are one of the common reasons for misdiagnosis with irritable bowel syndrome (IBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!