A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively). The physiological functions of the gastrointestinal tract are maintained via complex neuromodulation. Neuroregulatory imbalance is the primary cause of gastrointestinal diseases, including colorectal cancer (CRC). In CRC, there is a direct interaction between the nervous system and tumor cells. Moreover, this tumor-nerve interaction can indirectly regulate the tumor microenvironment, including the microbiota, immunity, and metabolism. In addition to the lower nerve centers, the stress response, emotion, and cognition represented by the higher nerve centers also participate in the occurrence and progression of CRC. Herein, we review some basic knowledge regarding cancer neuroscience and elucidate the mechanism underlying tumor-nerve interactions in CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2024.217431 | DOI Listing |
JAMA Netw Open
December 2024
Department of Epidemiology and Health Care Atlas, Central Research Institute of Ambulatory Health Care, Berlin, Germany.
Importance: A growing body of literature suggests the presence of a prodromal period with nonspecific signs and symptoms before onset of multiple sclerosis (MS).
Objective: To systematically assess diseases and symptoms diagnosed in the 5 years before a first MS- or central nervous system (CNS) demyelinating disease-related diagnostic code in pediatric patients compared with controls without MS and controls with another immune-mediated disorder, juvenile idiopathic arthritis (JIA).
Design, Setting, And Participants: This population-based, matched case-control study included children and adolescents (aged <18 years) in Germany with statutory health insurance from January 2010 to December 2020.
Am J Kidney Dis
December 2024
Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington; VA Puget Sound Healthcare System, Seattle, Washington.
Historically, the paradigm for all maladies was associated with an imbalance of the 4 humors: blood, black bile, yellow bile, and phlegm. Although our understanding of disease has evolved significantly since the time of Hippocrates, a similar cornerstone of inpatient and ambulatory care involves understanding and correcting imbalances of volume. The kidneys are the principal organs controlling extracellular volume, capable of both sensing and altering salt retention through multiple redundant pathways, including the sympathetic nervous system and the renin-angiotensin-aldosterone system.
View Article and Find Full Text PDFSynapse
January 2025
Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.
View Article and Find Full Text PDFACS Chem Neurosci
December 2024
Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland.
The sodium-dependent membrane transporter SLC6A15 (BAT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. BAT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids.
View Article and Find Full Text PDFTomography
December 2024
Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!