Increased phosphorylation of AMPKα1 S485 in colorectal cancer and identification of PKCα as a responsible kinase.

Cancer Lett

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • The study investigates how phosphorylation of AMPKα1 at S485 affects colon cancer cells and identifies PKCα as the responsible kinase.
  • The results indicate that S485 phosphorylation is higher in colorectal cancer tissues compared to normal ones and is linked to increased cell growth and migration.
  • The research highlights that PKCα plays a key role in this phosphorylation, as its inhibition reduces S485 phosphorylation and impacts cancer cell behaviors under various nutritional conditions.

Article Abstract

The present study attempts to examine the biological effect of phosphorylation of AMPKα1 S485 and identify the responsible kinase in colon cancer cells. Thus, our results showed that S485 phosphorylation was increased in colorectal cancer specimens as compared with adjacent normal tissues, which was inversely correlated to phosphorylation of T172. Our study further revealed that phosphorylation of S485 on AMPKα1 plays a promoting role in cell proliferation, colony formation, migration and growth of Xenograft tumor. Furthermore, we identified PKCα as a kinase specific for phosphorylation of S485. First, under the basal condition, S485 phosphorylation was blunted by Gö6983, a pan PKC inhibitor, but not by Akt inhibitor, MK2206, although the latter countered off the insulin-stimulated phosphorylation. Second, the phosphorylation was enhanced by PMA and attenuated by sgRNA for PKCα, but not by PKCγ and PKCδ, neither by siRNA for Akt1. Third, the phosphorylation was suppressed by shRNA for PLCγ1. Fourth, the phosphorylation was enhanced by ectopically expressing a constitutively active mutant of PKCα, but not PKCγ. Finally, the increase of S485 phosphorylation by high glucose or palmitic acid was almost completely abolished by Gö6983. Altogether, our data reinforced the tumor suppressive function of AMPK and demonstrated that PKCα is a major kinase responsible for phosphorylation of S485, which contributes to one of the mechanisms underlying the regulation of AMPK in cancer cells in response to nutritional conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2024.217418DOI Listing

Publication Analysis

Top Keywords

phosphorylation
12
s485 phosphorylation
12
phosphorylation s485
12
phosphorylation ampkα1
8
s485
8
ampkα1 s485
8
colorectal cancer
8
responsible kinase
8
cancer cells
8
phosphorylation enhanced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!