Delayed healing due to the persistent microenvironment disorder caused by the hyperglycemia and persistent inflammatory reaction is a core pathological characteristic of diabetic wound. Topical microenvironment modulation represents an important avenue to address delayed healing issue. Microneedles are powerful tools for topical microenvironment modulation as they can effectively deliver therapeutic ingredients into the shallow surface layer of the wound based on their depth-limited tissue penetration capability. Herein, a hybrid microneedle composed of carvacrol (CV), cyclodextrin (CD), mesoporous ceria nanoparticles (MCNs) and hyaluronate (HA) is constructed with objective to modulate the microenvironment within the diabetic wound. The hybrid microneedle is constructed via a two-stage process comprising three stepwise embedding procedures in the first stage and four microneedle casting procedures in the second stage. The physical, chemical and antibacterial performances, as well as the in vitro and in vivo therapeutic potentials, of the hybrid microneedle are evaluated. The therapeutic ingredients, mainly CV and MCNs, incorporated in the microneedle can be readily released into the diabetic wound, and effective microenvironment modulation is realized through the designed antibacterial, antioxidant and anti-inflammatory functions. Consequently, the tissue reconstruction processes including cell proliferation and migration, angiogenesis, and collagen deposition are accelerated due to the improved microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.139126 | DOI Listing |
Int J Biol Macromol
December 2024
School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing 400038, China. Electronic address:
Int J Pharm
January 2025
Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China. Electronic address:
Biosens Bioelectron
February 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha, 410082, China. Electronic address:
Fluctuations in cortisol levels from stressors are critical for the evaluation of endocrine function in body, and abnormal levels of cortisol may indicate serious health risks. Common strategies for cortisol detection are limited by the drawbacks of the intricate and time-consuming operations and the generation of body trauma. Herein, an aptamer-responsive microneedle patch sensor combining with hybridization chain reaction (HCR) amplification (Apt-HCR MN COR patch) was prepared for easy, accurate and minimally-invasive detection of cortisol in skin interstitial fluid (ISF).
View Article and Find Full Text PDFPharmaceutics
October 2024
Department of Pre-Health Professional Curricula, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA.
Drug delivery systems (DDS) have improved therapeutic agent administration by enhancing efficacy and patient compliance while minimizing side effects. They enable targeted delivery, controlled release, and improved bioavailability. Transdermal drug delivery systems (TDDS) offer non-invasive medication administration and have evolved to include methods such as chemical enhancers, iontophoresis, microneedles (MN), and nanocarriers.
View Article and Find Full Text PDFCurr Pharm Biotechnol
October 2024
Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata -700126.
Influenza, a highly transmissible respiratory infection caused by influenza viruses A and B, poses a persistent threat to global public health due to its high mutation rate, ability to develop resistance to existing antiviral drugs, and capacity for rapid spread. Current treatment options, including four main classes of antiviral agents-adamantanes, neuraminidase inhibitors, RNA-dependent RNA polymerase inhibitors, and polymerase acidic endonuclease inhibitors- are limited by the emergence of drug-resistant viral strains, non-specific drug distribution, and adverse side effects. Moreover, the effectiveness of traditional vaccines is often compromised by antigenic drift and shift, necessitating the development of alternative therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!