Lactate has been increasingly recognized for its role in diseases progression, necessitating a deeper understanding of its metabolic processes and regulatory mechanisms. This study aimed to evaluate the impact of lipopolysaccharide (LPS) on lactate accumulation in bovine mammary epithelial cells (BMECs) and to elucidate the underlying regulatory mechanisms. Further optimization of LPS treatment points was achieved by assessing the content of key glycolytic enzymes-hexokinases (HK), pyruvate kinase (PK) and pyruvate dehydrogenase (PDH)-as well as the expression levels of HK2, pyruvate dehydrogenase kinase4 (PDK4) and lactate dehydrogenase (LDHA). Our results indicate that LPS can promote intracellular glycolysis and inhibits pyruvate synthesis, thereby increasing lactate content. BMECs were cultured and divided into a control group (CON) and an LPS-stimulated group (10 μg/mL for 6 h, LPS group). LPS was found to upregulate expression levels of HIF-1α and MCT1, suggesting a role for HIF-1α and MCT1 in cellular glucose metabolism. To explore the effect of HIF-1α on lactate accumulation, BMECs were stimulated with a HIF-1α inducer (COCL) and HIF-1α inhibitor (DMBPA). COCL was observed to promote lactate accumulation, while DMBPA inhibited it. Additionally, modulation of HIF-1α expression influenced the expression of MCT1, which is a crucial transporter for extracellular lactate influx. To investigate the specific impact of MCT1 on intracellular lactate, we utilized overexpression plasmids and small interfering RNA to modulate MCT1 expression. The findings indicate that while MCT1 expression alone does not affect intracellular lactate levels, it does modulate the changes induced by LPS. In conclusion, our study suggests that LPS regulates lactate accumulation in BMECs through the HIF-1α/MCT1 pathway, providing insights into the metabolic dysregulation associated with LPS-induced stress in dairy cattle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.107261 | DOI Listing |
NPJ Parkinsons Dis
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan; Division of Sport Neuroscience, Kokoro Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan. Electronic address:
Exercise benefits the brain, particularly the learning and memory center-the dorsal hippocampus (dHPC)-and holds promise for therapeutic applications addressing age-related cognitive deficits. While moderate-to-vigorous-intensity exercise is commonly recommended for health benefits, our translational research proposes the effectiveness of very-light-intensity exercise in enhancing cognitive functions. However, the intensity-dependent characteristics of HPC activation have yet to be fully delineated; therefore, there is no evidence of whether such easily accessible exercises for people of all ages and most fitness levels can activate HPC neurons.
View Article and Find Full Text PDFDrug Resist Updat
December 2024
Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China. Electronic address:
The balance between CD8 T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) plays a crucial role in the immune checkpoint inhibition (ICI) therapy in gastric carcinoma (GC). However, related factors leading to the disturbance of TME and resistance to ICI therapy remain unknown. In this study, we applied N6-methyladenosine (m6A) small RNA Epitranscriptomic Microarray and screened out 3'tRF-AlaAGC based on its highest differential expression level and lowest inter-group variance.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Microglial processing and recycling of debris is implicated in AD. AD GWAS loci are enriched for genes in efferocytosis, phagocytosis, endosomal trafficking and cholesterol efflux. Acting as a buffer, lipid droplets increase as a consequence of an imbalance between lipid debris influx and efflux rates.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi, China.
Peroxiredoxin 6 (PRDX6) is one of the Peroxiredoxin family members with only 1-Cys, using glutathione as the electron donor to reduce peroxides in cells. PRDX6 has been frequently studied and its expression was associated with poor prognosis in many tumors. However, the expression of PRDX6 in multiple myeloma (MM) and its relevance with MM remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!