AI Article Synopsis

  • Polycystic ovary syndrome (PCOS) is commonly associated with oxidative stress, and this study explores the potential of atractylodin (ATR) to alleviate PCOS symptoms through its antioxidant properties.
  • A mouse model of PCOS was established to assess how ATR affects hormone levels, estrous cycles, and ovarian morphology, with in vitro experiments further investigating ATR's impact on cell viability and oxidative stress markers.
  • The findings suggest that ATR significantly improves hormone levels and ovarian structure by regulating the expression of PDK4 and inhibiting cell death, indicating ATR's potential as a therapeutic option for PCOS treatment.

Article Abstract

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder, and its close relationship with oxidative stress has been well-documented. Atractylodin (ATR) plays a role in the treatment of many diseases through its antioxidant function. However, its function in PCOS remains unexplored. In this study, the function and underlying mechanisms of ATR in mitigating PCOS symptoms were investigated.

Methods: A mouse model of PCOS induced using DHEA and a high-fat diet was established, and many factors such as hormone levels (FSH, LH, testosterone, and progesterone), the estrous cycle, and ovarian shape were evaluated. In vitro, PCOS model was established by DHEA-induced KGN cell, and the effects of ATR on ferroptosis and oxidative stress markers were explored. Specifically, the viability of KGN cells treated with ATR was assessed using the CCK-8 assay, and the levels of malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) were measured to evaluate oxidative stress. Expression of ferroptosis-related genes (NRF2, GPX4, SLC7A11) and PDK4 was analyzed by qRT-PCR and Western blotting. PDK4's interaction with ATR was examined through molecular docking and confirmed by surface plasmon resonance (SPR) analysis.

Results: Our data show that the treatment of ATR markedly increased hormone levels and improved normal estrous cycles. Moreover, ATR was found to improve ovarian morphology by decreasing cystic dilatation and increasing the number of corpora lutea. Mechanistically, our research found that ATR regulates the expression of PDK4 by binding to its GLY331 and inhibits granulosa cell ferroptosis by regulating the JAK-STAT3 pathway mediated by PDK4.

Conclusions: In conclusion, our study suggest that ATR may be a therapeutic option for managing PCOS and PDK4 could be a target for the development of new drugs for PCOS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113817DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
atr
9
polycystic ovary
8
ovary syndrome
8
jak-stat3 pathway
8
hormone levels
8
pcos
7
atractylodin alleviates
4
alleviates polycystic
4
syndrome inhibiting
4

Similar Publications

NAC-Grafted ROS-Scavenging Polymer Nanoparticles for Modulation of Acute Lung Injury Microenvironment In Vivo.

Biomacromolecules

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

-Acetyl cysteine (NAC) is an essential molecule that boosts acute lung injury (ALI) defense via its direct antioxidant capability. Nevertheless, the therapeutic use of NAC is limited due to its poor bioavailability and short half-life. In this study, NAC was grafted to the polyurethane consisting of poly(propylene fumarate), poly(thioketal), and 1,6-hexamethylene diisocyanate (PFTU) to reduce excessive oxidative stress and inflammatory factors in ALI.

View Article and Find Full Text PDF

Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.

View Article and Find Full Text PDF

Background: Unhealthy sleep and exposures to oxidative factors are both associated with poor cognitive performance (PCP), but limited evidence has been found regarding the relationship between sleep patterns and oxidative factor exposures independently or jointly with the risk of PCP.

Methods: We analyzed data from 2249 adults aged ≥60 years in the National Health and Nutrition Examination Survey (NHANES) database (2011-2014). Self-reported questionnaires were used to collect data on sleep duration and sleep disorder, categorizing sleep duration into three groups based on responses: short (6 hours or less per night), normal (7-8 hours per night), or long (9 hours or more per night).

View Article and Find Full Text PDF

Background: Methotrexate (MTX) is an agent used in the treatment of many neoplastic and non-neoplastic diseases and is known to cause oxidative damage in normal tissues. Curcumin (Cur) is a natural polyphenol compound with powerful antioxidant and antiapoptotic effects. In this study we investigate the effects of Cur on MTX-induced ovarian damage.

View Article and Find Full Text PDF

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!