Background: Excessive inflammation in sepsis causes microvascular dysfunction associated with organ dysfunction and high mortality. The present studies aimed to examine the therapeutic potential of linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor in a clinically relevant polymicrobial sepsis model in mice.

Methods: Sepsis was induced by cecal ligation and puncture (CLP). Mice were grouped into: Sham control+vehicle; Group 2: CLP+vehicle; Group 3: CLP+dexamethasone (10 mg/kg, s.c.) given 6 h after CLP; Group 4: CLP+linagliptin (1 mg/kg, s.c.) given 6 h after CLP. The experiment was terminated 24 hours after CLP in two experimental sets. Seven-day survival following CLP was determined in a third experimental set.

Results: Treatment with linagliptin inhibited DPP-4 activity, increased the levels of active forms of endogenous gastric inhibitory polypeptide and glucagon-like peptide-1, without affecting the blood glucose levels in CLP mice. Compared to vehicle treatment, administration of linagliptin reduced sepsis-induced tissue hyper permeability as evidenced by a reduction in vascular Evans blue leakage, prevented edema formation in the lung, heart, liver and kidney. Furthermore, linagliptin or dexamethasone reduced sepsis-induced proinflammatory cytokine and chemokine production, such as IL-1β, IL-2, IL-10, IL-23, IL-27, VCAM-1, eotaxin, MDC, MCSF1, GCP-2, and NGAL. Importantly, administration of linagliptin improved the 7-day survival rate following CLP in mice. RNA sequencing in lung and heart revealed that linagliptin attenuated key inflammatory pathways including TNF alpha (via NFκB) and IL6/JAK/STAT3 signaling and activated interferon signaling in the heart.

Conclusions: Linagliptin treatment can attenuate the inflammatory response, protect against severe sepsis-induced vascular hyperpermeability, reduce multiorgan injury, and most importantly, improve the survival.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117778DOI Listing

Publication Analysis

Top Keywords

clp mice
12
dipeptidyl peptidase-4
8
linagliptin
8
inflammatory response
8
edema formation
8
6 h clp
8
administration linagliptin
8
reduced sepsis-induced
8
lung heart
8
clp
7

Similar Publications

IL-6 and PD-1 antibody blockade combination therapy regulate inflammation and T lymphocyte apoptosis in murine model of sepsis.

BMC Immunol

January 2025

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Hospital, 282 Munhwa-Ro, Jung-Gu, Daejeon, 35015, Republic of Korea.

Background: Interleukin-6 (IL-6) plays a central role in sepsis-induced cytokine storm involving immune hyperactivation and early neutrophil activation. Programmed death protein-1 (PD-1) is associated with sepsis-induced immunosuppression and lymphocyte apoptosis. However, the effects of simultaneous blockade of IL-6 and PD-1 in a murine sepsis model are not well understood.

View Article and Find Full Text PDF

5β-hydroxycostic acid from Laggera alata ameliorates sepsis-associated acute kidney injury through its anti-inflammatory and anti-ferroptosis effects via NF-κB and MAPK pathways.

J Ethnopharmacol

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: The whole plant of Laggera alata is frequently utilize to remedy inflammatory diseases including nephritis as a traditional Chinese medicine. However, its active ingredients and mechanism of action against sepsis-associated acute kidney injury (SA-AKI) are unknown.

Aim Of The Study: This study aimed to identify active compounds from L.

View Article and Find Full Text PDF

Soluble CD72 concurrently impairs T cell functions while enhances inflammatory response in sepsis.

Int Immunopharmacol

January 2025

Department of Critical Care Medicine, West China Hospital, Sichuan University, China. Electronic address:

Background: Sepsis is defined as multi-organ dysfunction caused by dysregulated host response to infection. This dysregulated host response includes enhanced inflammatory responses and suppressed adaptive immunity, but the molecular mechanisms behind it have not yet been elucidated. CD72, a type II transmembrane protein that is primarily expressed in B cells, was found to play an immunomodulatory role in the immune system and was associated with mortality in patients with sepsis.

View Article and Find Full Text PDF

Background: Neuroinflammation is one of the essential pathogeneses of cognitive damage suffering from sepsis-associated encephalopathy (SAE). Lots of evidences showed the microglia presented mitochondrial fragmentation during SAE. This study investigated the protective effects and novel mechanisms of inhibiting microglia mitochondrial fragmentation via mitochondrial division inhibitor 1 (Mdivi-1) on cognitive damage in SAE.

View Article and Find Full Text PDF

To illustrate the potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in mitigating septic lung injury by reducing the excessive formation of neutrophil extracellular traps (NETs), a mouse model of septic lung injury was induced through cecal ligation and puncture (CLP). The mice received intraperitoneal injections of MSC-Exos. Post injection, pathological alterations of the lung tissue were evaluated through HE staining, and the levels of inflammatory markers in each mouse group at various time points were assessed using ELISA kits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!