Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP). Therefore, in addition to metal selectivity and blood-brain barrier (BBB) permeability, an emerging challenge for copper chelators is to prevent the formation of neurotoxic Cu-Aβ species without perturbing the neuroprotective Cu-PrP interaction. Previously, we reported the design of a tetrapeptide (TP) that withdraws Cu from Aβ(1-16) and impacts the Cu-induced aggregation of Aβ(1-40). In this study, we improved the drug-like properties of TP in a BBB model, evaluated the metal selectivity of the optimized peptide (TP*), and tested its effect on Cu coordination to PrP and proteins involved in copper trafficking, such as copper transporter 1 and albumin. Our results show that changing the stereochemistry of the first residue prevents TP degradation in the BBB model and coadministration of TP with a peptide that increases BBB permeability allows its passage through the BBB model. TP* is highly selective toward Cu in the presence of Zn ions, transfers Cu to copper-trafficking proteins, and forms a ternary TP*-Cu-PrP species that does not perturb the physiological conformation of PrP and displays only a minor impact in the neuroprotective Cu-dependent interaction of PrP with the -methyl-d-aspartate receptor. Overall, these results show that TP* displays desirable features for a copper chelator with therapeutic potential against AD. Moreover, this is the first study that explores the effect of a Cu chelator with therapeutic potential for AD on Cu coordination to PrP (an emerging key player in AD pathology), integrating recent knowledge about metalloproteins involved in AD with the design of copper chelators against AD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.4c00796DOI Listing

Publication Analysis

Top Keywords

therapeutic potential
12
copper chelators
12
bbb model
12
alzheimer's disease
8
blood-brain barrier
8
chelators prevent
8
prevent formation
8
metal selectivity
8
bbb permeability
8
coordination prp
8

Similar Publications

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.

View Article and Find Full Text PDF

Characterization of a chitinase from Trichinella spiralis and its immunomodulatory effects on allergic airway inflammation in mice.

Parasit Vectors

January 2025

School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.

Background: A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!