AMP-activated protein kinase (AMPK) is the master regulator of cellular energy which gets activated during energy stress and restores tissue homeostasis. AMPK is widely expressed in the pancreas and is involved in protein synthesis. In cerulein-induced acute pancreatitis (AP), diminished AMPK activity in the pancreatic tissue may be associated with pancreatic inflammation and oxidative stress. Our results demonstrated that berberine (BR) treatment produced significant decrease in plasma amylase and lipase levels and improved histopathological features in AP mice model. Myeloperoxidase (MPO) activity indicated that BR suppressed the infiltration of neutrophils in pancreas. BR treatment markedly decreased the levels of proinflammatory cytokines including interleukins (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α) via inhibition of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression. In addition, BR activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling and inhibits cerulein-induced oxidative-nitrosative stress. Mechanistically, we found inhibition of AMPK activity in cerulein-induced AP, while BR-treated animals showed marked increase in the AMPK expression. Together, our study indicated that BR-mediated AMPK activation in pancreatic tissues demonstrated attenuation of cerulein-induced oxidative stress and inflammation. Based on our observations, further exploration of this promising natural product against AP and associated complications may lead to promising therapeutic options.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.24468DOI Listing

Publication Analysis

Top Keywords

cerulein-induced acute
8
acute pancreatitis
8
ampk activation
8
ampk activity
8
oxidative stress
8
ampk
7
cerulein-induced
5
berberine attenuates
4
attenuates cerulein-induced
4
pancreatitis modulating
4

Similar Publications

AMP-activated protein kinase (AMPK) is the master regulator of cellular energy which gets activated during energy stress and restores tissue homeostasis. AMPK is widely expressed in the pancreas and is involved in protein synthesis. In cerulein-induced acute pancreatitis (AP), diminished AMPK activity in the pancreatic tissue may be associated with pancreatic inflammation and oxidative stress.

View Article and Find Full Text PDF

Polydatin-Mediated Inhibition of HSP90α Disrupts NLRP3 Complexes and Alleviates Acute Pancreatitis.

Research (Wash D C)

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China.

The NLRP3 inflammasome plays a critical role in various inflammatory conditions. However, despite extensive research in targeted drug development for NLRP3, including MCC950, clinical success remains elusive. Here, we discovered that the activated NLRP3 inflammasome complex (disc-NLRP3) and the activating mutation L351P exhibited resistance to MCC950.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a common acute inflammatory abdominal condition. Severe acute pancreatitis (SAP) can provoke a systemic inflammatory response and lead to multiple organ failure. The S100A9 protein, recognized as a major inflammatory biomarker, plays a significant role in both infection and inflammatory responses.

View Article and Find Full Text PDF

Our previous study established the effectiveness of scopoletin (SC) in protecting mice against acute pancreatitis (AP) induced by cerulein and subsequent pulmonary injury. However, the precise molecular mechanisms underlying SC protective effects have yet to be elucidated. This research suggests that SC reduces the release of pro-inflammatory cytokines and nuclear factor kappa B (NF-κB) by activating the peroxisome proliferator-activated receptor γ (PPAR-γ) in mice suffering from AP.

View Article and Find Full Text PDF

Background: Acute pancreatitis (AP), the initially triggered inflammatory process in the pancreas, can be life-threatening. It has been reported that 15-lipoxygenase may promote the removal of damaged intracellular components, maintain intracellular homeostasis, and promote apoptosis by upregulating the activity of caspases. Despite an increased understanding of the lipoxygenase pathway in inflammation and immune diseases, the role of the gene product in modulating the inflammatory changes during AP is not well defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!