The work describes a novel sensing and transportation feasibility of the well-established antifungal drug Flucytosine (5-FC) using a 2D Silicon carbide (SiC) and Germanium-doped Silicon carbide (Ge@SiC) nanosheet via PBE level of Density functional theory. The computational study revealed that the drug molecules adhere to SiC and Ge@SiC sheets, maintaining their structural properties through physisorption on SiC and chemisorption on Ge@SiC. The charge transfer process associated with the adsorption is observed by Lowdin charge analysis and both the SiC and Ge@SiC sheets are identified as a feasible oxidation-based nanosensor for the drug. The results of electronic property calculation revealed a reduction in bandgap by 48.2% and 44.8% on SiC and Ge@SiC sheets respectively on adsorption of the drug, highlighting SiC nanosheet to be used as a bandgap-based sensing device. Sensing response at room temperature and human body temperature suggested that, the SiC sheet has an excellent selectivity to Flucytosine drug. The drug's desorption efficiency from the carrier is analyzed using recovery time analysis at different temperatures and frequencies, suggesting the SiC nanosheet to be a better candidate. Together, the study highlights the potential sensing ability of SiC nanosheet for Flucytosine in contrast to the existing 0-D nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401575 | DOI Listing |
Materials (Basel)
December 2024
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
As an environment-friendly material, graphene oxide nanosheet can effectively improve the polishing surface quality of single crystal diamond workpieces. However, the lubricating and chemical effects of graphene oxide nanosheets have an uncertain impact on the polishing material removal rate. In this paper, the graphene oxide-enhanced hybrid slurry was prepared with good stability.
View Article and Find Full Text PDFSmall Methods
December 2024
School of Material Science and Engineering, National Institute of Technology Calicut, NIT Campus, Kozhikode, Kerala, 673601, India.
The work describes a novel sensing and transportation feasibility of the well-established antifungal drug Flucytosine (5-FC) using a 2D Silicon carbide (SiC) and Germanium-doped Silicon carbide (Ge@SiC) nanosheet via PBE level of Density functional theory. The computational study revealed that the drug molecules adhere to SiC and Ge@SiC sheets, maintaining their structural properties through physisorption on SiC and chemisorption on Ge@SiC. The charge transfer process associated with the adsorption is observed by Lowdin charge analysis and both the SiC and Ge@SiC sheets are identified as a feasible oxidation-based nanosensor for the drug.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan.
In this study, a three-dimensional (3D) interconnected porous Ni/SiC skeleton (3D Ni/SiC) was synthesized by binder-free hydrogen bubble template-assisted electrodeposition in an electrolyte containing Ni ions and SiC nanopowders. This 3D Ni/SiC skeleton served as a substrate for directly synthesizing nickel-cobalt layered double hydroxide (LDH) nanosheets via electrodeposition, allowing the formation of a nickel-cobalt LDH nanosheet-decorated 3D Ni/SiC skeleton (NiCo@3D Ni/SiC). The multiscale hierarchical structure of NiCo@3D Ni/SiC was attributed to the synergistic interaction between the pseudocapacitor (3D Ni skeleton and Ni-Co LDH) and electrochemical double-layer capacitor (SiC nanopowders).
View Article and Find Full Text PDFJ Nanobiotechnology
October 2024
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
Timely and effective interventions after tracheal mucosal injury are lack in clinical practices, which elevate the risks of airway infection, tracheal cartilage deterioration, and even asphyxiated death. Herein, we proposed a biomaterial-based strategy for the repair of injured tracheal mucosal based on a copper hydrogen phosphate nanosheets (CuHP NSs) functionalized commercial hydrogel (polyethylene glycol disuccinimidyl succinate-human serum albumin, PH). Such CuHP/PH hydrogel achieved favorable injectability, stable gelation, and excellent adhesiveness within the tracheal lumen.
View Article and Find Full Text PDFBiomaterials
February 2025
Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai, 200050, China. Electronic address:
Biofilm-associated infections (BAIs) continue to pose a major challenge in the medical field. Nanomedicine, in particular, promises significant advances in combating BAIs through the introduction of a variety of nanomaterials and nano-antimicrobial strategies. However, studies to date have primarily focused on the removal of the bacterial biofilm and neglect the subsequent post-biofilm therapeutic measures for BAIs, rendering pure anti-biofilm strategies insufficient for the holistic recovery of affected patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!